Tag Archives: Lighting

Video: Interactive m!Qbe redefines lighting


The Atmel-powered m!Qbe is an intuitive, interactive platform that allows users to easily control multiple lights. The system comprises a number of components, including the m!Qbe (central) module, m!base, m!charger and WiFi.

The m!Qbe is designed to be used in one room with an m!Base and should, depending on the layout, cover a circle with a diameter of 20 meters.

“Just flip it and switch to the suitable lighting situation for your current activity such as low yellowish light to relax on the couch, bright white light to read the newspaper or different colors for your birthday party,” an m!Qbe rep explained in a recent Indiegogo post.

“Use it in everyday life with many more possibilities than a traditional light switch and much faster than manual control on a mobile device.”

Indeed, the m!Qbe’s three faces, or sides, are designed to “memorize” specific settings.

“You predefine them once and recall them whenever you like,” said the rep.

“In addition, you can add a delay on every favorite. So you can go to bed or leave your home in bright light for instance. The m!Qbe [will] automatically turn off all your [lights] after a while.”

As you can see in the video above, the m!Qbe can be rotated to manually change color or brightness, while a brief touch on the icon switches from one light to another, allowing the user to easily select and adjust specific fixtures.

So, how does the platform work?

 Essentially, the m!Base component communicates with the m!Qbe and the network of lights.

“It converts the detected motion into lighting situations and provides access to the settings of the m!Qbe,” the rep continued.

“The installation of the m!Base is a plug and play solution. In its standard configuration you connect the m!Base with a cable to your network. If you want to connect it wirelessly, please order the WiFi option.”

As noted above, the m!Qbe is built around an Atmel 8-bit microcontroller (MCU), which uses data generated from a three-axis acceleration sensor and a three-axis gyro sensor to precisely calculate motion.

“Additionally on each of the two manual faces, a capacitive touch sensor is integrated and allows to detect touch actions of different lengths. In the m!Base a Linux system transfers the commands received via bluetooth from the m!Qbe to commands for every single lamp in the network,” the rep added.

“For the configuration of this transfer and to read out statistical information a web interface is implemented. If you want to extend the functions of the m!Qbe the easiest way is to modify the software of the m!Base.”

Last, but certainly not least, m!Qbe supports the Philips Hue system that includes not only the connected bulbs but also Friends of Hue such as LightStrips and LivingColors Bloom, along with dimming plugs for more traditional lamps.

Interested in learning more? You can check out the official m!Qbe page on Indiegogo here.

Arduino in a cardboard box

If you went to Maker Faire New York, you saw Atmel’s tables had flashing LEDs on the edge.

LED-tables-Atmel_Maker_Faire

The tables Atmel had at NY Maker Faire had LED strips built into them.

Those strips were powered by these custom “Arduinos in a box.” The cardboard box was perfectly in keeping with cardboard tables, made by chairigami.

Arduino-in-a-box

We created a battery-powered Arduino to run the LED lights on the cardboard tables.

Arduino-guts-in-a-box

Inside the box is an Atmel-powered Arduino, as well as the battery pack used to run the board and LED strip.

Arduino-power-in-a-box

This side has the D-sub connector used to connect to the LED strips. There is also a power connector if you don’t want to run on the internal batteries.

Arduino-USB-in-a-box

The boxes have a cut-out for the USB connector, should you need to do some emergency programming on the show floor.

Arduino-battery-in-a-box

A nice touch is the Velcro strip on the back of the battery pack that holds it to the side of the box. You can see the “ECO” (engineering change order) where the USB hole was on the same side, but that got changed in the prototyping stage. Every product tells a story.

Be sure to check out the Atmel booth at Maker Faire Bay Area (Silicon Valley), World Maker New York (in Queens), and in just a few weeks (April 6-7, 2014) we will be at Maker Faire @ Shenzhen (China).

Using Arduino PWM for constant-current drive

The always excellent Circuit Cellar Magazine has a nice article by Ed Nisley. Arduino PWM vs MOSFET Transconductance describes his characterization of Arduino PWM outputs for the constant-current drive of MOSFETs. His application is LED drive, but you could use the knowledge anywhere, including a programmable current sink. Now Circuit Cellar is a paid-subscription magazine, so I can’t link to free article, but maybe their lawyers will let me take a picture of a picture in the print magazine, to which I am a long-time subscriber.

Ed-Nisley_Arduino-PWM-vs-MOSFET-Transconductance_PCB

This photo of the board Ed Nisley used to develop his constant-current source tells you it is not some Spice simulation or a theoretical track. This is a sure tip-off that Ed knows what he is writing about.

Ed-Nisley_Arduino-PWM-vs-MOSFET-Transconductance_scope

This scope shot also reassures you that Ed is not venturing forth some opinion on how the hardware and firmware works, it is proof positive he built this stuff and that it really works. I scratched off the readouts to make sure this is fair use and not a violation of Circuit Cellar’s copyrights.

Analog Guru Paul Grohe taught me that you should always look for pictures of real hardware in articles, and that if the curves are ”too pretty” they are probably marketing BS instead of real data. That is the great thing about this article; it’s got both pictures and data that tell you that you can trust the content.

There is another interesting article in the March 2014 Circuit Cellar issue. It’s about an outfit called ImageCraft. They make a C compiler with an IDE (integrated development environment) for Atmel AVR and ARM Cortex-based MCUs. Now I am a fan of Atmel’s free Studio 6 IDE, but feel free to use whatever IDE you prefer to write the code for your projects.

Now I can’t show you these articles on-line, since Circuit Cellar is a subscription print magazine. You have to give them 50 bucks a year to get it. You can get it as a digital pdf if you want to save trees. Its $85 a year for the both print and digital versions. There are large discounts for two- or three-year subscriptions. Best of all, you can give them something like $225 and get every single issue in history on a thumb drive. Then with your combo subscription you can add your monthly pdf to the archive thumb drive, and still have the print edition to impress your friends and boss.

Atmel’s Tech on Tour heads to Napa

After a successful Tech on Tour (ToT) stop in San Francisco’s SoMa neighborhood, the Atmel Mobile Training Center is heading to California’s sunny Napa Valley.


We’ll be at the Meritage Resort & Spa on 875 Bordeaux Way on March 23-24, 

showcasing a wide variety of tech across a number of spaces including touchsecuritymicrocontrollers (MCUs), wirelesslighting and automotive.

More specifically, you can check out:

In addition, Sander Arts, VP of Corporate Marketing at Atmel, will be hosting a session on easy-to-use, fully integrated solutions for University students at 12:30 pm on March 23 in the Carneros Ballroom.

“In this short session, students will see how Atmel provides a broad portfolio of hardware and software solutions that are easy-to-use and cost-effective for the classroom environment. Our boards and software development kits provide students hands-on training with some of the latest electronics for developing fun applications using Ardunio-based boards to Atmel’s own development solutions,” Arts told Bits & Pieces.

“They will also hear about Atmel’s revamped University Program and how we are using our latest social media channels, mobile trailer, challenges and competitions to engage with University students.”

Interested? You can register for the event here.

Atmel’s Tech on Tour heads to SF



After successfully wrapping up SXSW 2014 in Austin, Atmel’s Tech on Tour (ToT) trailer is back on the road to the Bay Area – with a long-awaited San Francisco SoMa stop scheduled for March 18, 2014.

We’ll be at China Basin, Lot C @ 185 Berry Street (between 3rd and 4th) from 10AM-6PM, showcasing a wide variety of tech across a number of spaces including touchsecuritymicrocontrollers (MCUs), wirelesslighting and automotive.

More specifically, you can check out:

Atmel’s ToT will also be hosting an industry panel on the rapidly evolving Internet of Things (IoT) at 4:00PM.

Join industry experts from Atmel, ARM, Humavox and August for an interactive discussion on how the IoT, the hottest topic in the technology sphere, is impacting today’s market across multiple segments.

Interested? You can register for the event here. See you in SoMa!!!

Atmel is ready to rock @ SXSW!

Atmel’s Tech on Tour trailer is on the road again and heading to Austin, Texas for SXSW. We’ll be at the Hyatt Regency Austin from March 7-9, 2014, so be sure to stop by during the show to see our latest demos.

We’ll be showcasing a wide variety of tech across a number of spaces, including touch, security, microcontrollers (MCUs), wireless, lighting and automotive.

More specifically, you can check out:

In addition, we’re proud to host a guest appearance by Autodesk, the very same folks behind the world famous Instructables and 123D Circuits.

With 123D Circuits, you can breadboard and simulate your AVR-powered Arduino-based circuits, while writing, compiling and running code right in your browser. When you’re done, you can have the circuit board professionally made and shipped right to your doorstep.

Interested in learning more about Atmel’s tech on tour? You can check out our official ToT page here.

Reza Kazerounian talks IoT and MCUs (Part 2)



EEWeb recently conducted an interview with Reza Kazerounian, Senior VP and GM of the Microcontroller Business Unit at Atmel. In part one of our synopsis, we reviewed how Kazerounian defined the Internet of Things, detailed the company’s comprehensive IoT portfolio and discussed Atmel’s relationship with the rapidly growing DIY Maker Movement.

Kazerounian went on to confirm that Atmel is currently working with a number of customers to market various IoT applications.

reza1cropped

“These customers range from smart metering, to industrial, consumer applications similar to Nest, [as well as] medical and white goods. Many of these customers have been working with Atmel for years and are in production with our technologies today,” he explained.

“With the dawn of the Internet of Things, these products are being categorized under a broader market—the IoT. An example includes connected thermostats in the home and building automation sector, [which] have [actually] been around for a while.”

However, says Kazerounian, it was not until recently that such devices were considered mainstream.

“It took mass adoption of smart tablets, smartphones and other smart consumer devices to enable more of these ‘connected’ devices to be easily accessible to the Internet and available at a cost-effective price point,” he added.

Indeed, “separate” technologies for IoT have been around for some time, but the requirements to seamlessly run numerous technologies simultaneously took longer to achieve.

“For example, connecting your smartphone at home to control your lighting is becoming a reality today. Another important factor for the IoT is wireless connectivity. These connectivity solutions operate on a number of different standards including Wi-Fi, ZigBee, Bluetooth, and others,” Reza continued.

smarthome

“For IoT applications, it’s important to adopt the right wireless standard based on the application and consumer requirements. For example, if you want a device that is connected to a wireless network at home and can traffic the data with a high data rate, Wi-Fi is the most viable type of technology. For wearable devices, you would need a wireless connection with the lowest power consumption available since many of today’s wearable devices run on batteries.”

Kazerounian also noted that the IoT landscape is populated by applications with embedded processing and connectivity requirements that offer companies such as Atmel an advantage.

“[Indeed, we] made a recent investment in our connectivity portfolio over a year ago [by] acquiring Ozmo Devices, a Wi-Fi connectivity company. Adding to our broad wireless product portfolio, this strategic acquisition helped us enhance our Wi-Fi connectivity solutions, an important part of our strategy for targeting the IoT market,” he said.

atmelzigbit

“Atmel also has a broad portfolio of touch technologies, from capacitive touch buttons, sliders and wheels to touchscreens. As sensors and sensing nodes become an important part of the IoT ecosystem, our embedded processing solutions can combine input from multiple sensors to provide real-time direction, orientation and inclination data to bring visibly superior performance to gaming, navigation, augmented reality and more.”

Reza concluded his interview with EE Web by emphasizing that Atmel views microcontrollers (MCUs) as an essential building block for every PC, consumer device, industrial machine, home connectivity device and automobile. To be sure, MCUs are playing an increasingly critical role in the lucrative space.

“As the semiconductor industry has transitioned from PCs to mobile, IoT will now rise to become the predominant market,” Kazerounian explained. 

”This transition will favor ultra-low power and integration of microcontrollers, wireless connectivity, security, touch technologies and sensor management products. Atmel is uniquely positioned and fully committed to maintaining our leadership position in the microcontroller industry – and to do so requires winning in the IoT.”

Interested in learning more? You can check out Atmel’s AVR MCU portfolio here and our ARM lineup here.

Note: This is part two of a two-part series. Part one can be read here.

5 billion wireless sensing IoT devices by 2019

Analysts at ON World expect 5 billion sensing Internet of Things (IoT) devices by 2019.

“The Internet of Things is here,” ON World research director Mareca Hatler recently told CIOL. “There are thousands of applications today using millions of wireless sensing devices that create life enhancing changes in energy usage, security and safety, health and wellness, smart lighting, building management and optimized industrial processes.”

More specifically, says Hatler, the majority of wireless sensing and control devices will be Internet connected by 2019, with cumulative shipments between 2010 and 2019 reaching 5 billion worldwide.

As noted above, key markets for wireless IoT platforms include:

  • Smart homes & buildings – Millions of residential and commercial buildings are already equipped with cloud-connected wireless sensing and control solutions for safety, security, lighting, energy management, comfort and convenience.
  • 

Smart energy – Over a billion Internet connected smart meters will be installed worldwide within the next decade.
  • 

Smart lighting – Smart lighting is one of the fastest growing markets for IoT solutions. Indeed, by 2020, there are expected to be 100 million Internet connected wireless light bulbs and lamps for residential, commercial and municipal lighting.
  • Health & wellness – Mobile sensing solutions are projected to be the largest IoT market, with health and wellness making up the majority of the applications. Between 2013 and 2017, ON World predicts 250 million wearable health and fitness sensing devices will be shipped worldwide.

“Wirelessly connected Internet of Things solutions are changing the way people live and interact with their environment,” ON World analysts conclude. “The meteoric rise of smart devices and cloud-based software and apps are transforming nearly every aspect of our lives.”

Arc explosions illustrate the dangers of electricity

I wrote a blog post a while back about the difficulty or having cars with 42V instead of 12V batteries. I also pointed out the difficulties of distributing dc inside your house and to your house. It got picked up by EDN, and the comments were interesting. Someone challenged my assertion that 24V relays switches are less reliable. Sorry, I worked for GMC Truck and Coach as an auto engineer in the electrical group. Heck, just read any switch or relay datasheet and you can see you have to de-rate for dc and de-rate even more for higher-voltage dc. Someone pointed out the phone company uses 48V dc, and I had to explain that the 48V the POTS (plain-old telephone system) sends to your house is also high impedance, 600 ohms, so that make is much less arc-prone and easier to switch.

Arc-flash-person

Others challenged my observation that it is hard to distribute dc in your house due to the fire hazard from the arcs and the same problems with switches and relays. Well, even ac has arcs that are hard to quench. Bigger dc circuit breakers have magnets in them to pull the arc one side and make it longer so it can break. Really big breakers, both ac and dc, have compressed air that blows the arc out just like your kid with a birthday candle.

Arc-flash-box-person

So here is a nice video of an ac arc flash that should give you some idea of the difficulty of quenching an arc. Palo Verde had a horrible arc flash in 2008 that thankfully had no injuries. And here is a training video of an arc flash form the fine folks at e-Hazard.com

Here is another training video from Westex flameproof clothing:

And if you wondered if there was any glory left in the American worker, check out this high-voltage lineman working from a helicopter.

So that’s the trouble with dc. Since the voltage is not going through zero 120 times a second it is much harder to quench the arc. The operative word is “plasma”. That is what Fran Hoffart from Linear Tech taught me about li-ion batteries. He said that the burning lithium is certainly a problem. But the real mess is that a plasma ball forms, and that shorts out any other battery cells in the vicinity. An arc is plasma, and that is some nasty stuff. I mentioned to Fran that the iron phosphate chemistry lithium cells are supposed to be burn-proof. Fran looked at me with an expression that said “you can’t be that stupid” and replied “they all burn”. It is remarkable the difference you hear when talking to people who are making and selling the battery cells versus the people like Fran, that are making the chips to reliably charge the cells.

Arc-Flash-outside

I guess that is why that outlaw biker told me that the only thing that he was really scared of was electricity. I asked why and he said “Because it can kill you and you can’t see it.”

High-performance lighting with Atmel’s MSL2021/23/24 LED drivers

Atmel’s MSL2021/23/24 series of solid state lighting (SSL) LED drivers are equipped with an adaptive power control scheme and temperature compensation circuitry – offering the most efficient power management for high color-rendering index (CRI) luminaires.

According to an Atmel engineering rep, the MSL2021/23/24 devices drive one dominant LED string and one color LED string to achieve the target correlated color temperature (CCT), replicating the color spectrum and attaining a high CRI value.

“Competitive LED drivers, by contrast, are more expensive and complex to use, requiring an external microcontroller and firmware to address temperature compensation,” the engineering rep explained.

The above-mentioned Atmel series consists of three devices:

MSL2021 – The first LED driver with integrated temperature compensation for the color LED string.

MSL2023 – Equipped with an I2C serial port and internal pulse-width modulation (PWM) generators.

MSL2024 – Features PWM inputs which are suited for development with Atmel’s general-purpose and communications AVR microcontrollers.

Key functions and features include color control of two-color LED light engines, direct control of offline AC/DC controllers, adjustable temperature compensation for controlling color over temperature, as well as PWM and peak current control of each LED string.

Additional key specs include an accurate “white point”adjustment using proprietary temperature compensation scheme; control of single or two-stage power factor correction (PFC) AC/DC or DC/DC supply via efficiency optimizer; initial calibration at factory and storage of system defaults via integrated EEPROM; smooth start-up to avoid “red flash” and comprehensive fault management.

In terms of specific applications, the MSL2021/23/24 LED drivers can be used for general lighting, architectural lighting and mood lighting. Interested in learning more about Atmel’s extensive lighting portfolio? Be sure to check out our main lighting page here which offers a detailed look at various lighting technologies.