Tag Archives: touch

The Sensel Morph is a next-gen, multi-touch input device


This pressure-sensitive, multi-touch input device will enable users to interact with the digital world like never before.


Despite all the advancements in technology, the keyboard and mouse have collectively withstood the test of time, remaining relatively unchanged for decades — until now. That’s because Mountain View, California startup Sensel is hoping to usher in a new generation of multi-touch interaction with an input device that they call the Morph.

58007c4aeaf1ecaddafdbfdba9e69a4f_original

Powered by the company’s patented Pressure Grid technology, the Morph will let users interact with computers and programs in a whole new way. While on the surface it may appear to look like an ordinary trackpad, it is far from that. Inside lies approximately 20,000 sensors (or “sensels”) that can detect and measure the force of even the slightest touch. And given that it’s not a capacitive touch device, it doesn’t require a human to press on its outer force-sensing material. Instead, any object ranging from a paintbrush to a drumstick will do the trick.

c8747240b8afea5489d8bea1d88ca194_original

“Unlike other touch technologies, which can only sense conductive objects, each of the sensor elements in our device senses pressure with a high dynamic range. These sensors allow us to capture a high-resolution image of the pressure applied to the device. Highly tuned algorithms on the device take these pressure images and turn them into a list of touch locations, each with their own force and shape information,” its creators write.

What’s nice is that the Morph works right out of the box with an assortment of applications, and is even hackable for the tech-savvy bunch. Simply connect it to your computer via USB, to your iPad over Bluetooth, or to your Atmel powered Arduino with developer cables, and you’re good to go.

831980e7ec08c19c823512be3bb06803_original

As its name would imply, the unit can literally “morph” depending upon your activities throughout the day. This is achieved with the help of magnetic, fully customizable overlays (each shipment will come with three) that are placed over the gadget and instantly provide a visual “map” for each mode’s unique functionality. Backers can choose from a QWERTY keyboard, a music production controller, a piano, a drum pad, a game console, an art overlay, as well as one more to be decided by the Kickstarter community.

What’s more, Sensel has introduced an “innovator’s” overlay, which gives the Maker crowd the ability to design, print and use their own custom interfaces. And as if that wasn’t enough, you can actually combine multiple devices to amplify the awesomeness. For example, you can put four Morphs together to make an instrument with 96 keys.

7ab982bb9080e4fde7f01fa48f8e9800_original

“Imagine having your art tablet, music production controller, QWERTY keyboard, piano, video game controller (and anything else your mind can fathom) all in one device. If you can imagine something so limitless without your brain imploding, you’ve imagined the Sensel Morph,” the team explains.

With the Morph, you will also be able to create new, custom interfaces. The Sensel crew is developing a web-based drag-and-drop interface that will go live when the first batch of devices ship. With this interface, you will be able to devise your own overlay without having to do any coding. As for the developers out there, Sensel’s open source API will enable you to integrate the propietary technology into your own applications. The Morph is compatible with Windows, Mac, Linux, iOS and Arduino.

“Our mission from the start was to address the mismatch between the expressive capabilities of our hands and the restrictive interfaces of today’s devices,” the folks at Sensel add. “We want to enable new ways of interaction with digital devices and allow Morph users to unleash new possibilities in the worlds of music, art, gaming (cue Buzz Lightyear), and beyond!”

c2c47e27452fe390e35e274d0c26439c_original

Housed inside the iPad-sized device’s aluminum casing and beneath its super thin, force-sensing material lies a patented electrical drive scheme and circuitry, which includes a microprocessor, an accelerometer, LEDs, Bluetooth LE support, a rechargeable battery and a microUSB port.

Ready to interact with your digital world like never before? Head over to the Morph’s Kickstarter campaign, where Sensel is currently seeking $60,000. Delivery is slated for next summer.

All tiny AVR parts in a spreadsheet

I just made a spreadsheet of all the tinyAVR parts. All my pals love the MCU selector guide, but I have a lot of analog dinosaur buddies that prefer a spreadsheet to a web-based interface. You can sort the data and this spreadsheet has the filter box on the columns, so you can sort out things you care about and exclude the things you don’t. The spreadsheet fits on a 24-inch display, and you can print it out on a single B-sized sheet and use it as an infographic.

ATtinyAVR-product-line_2014-08-20

This screenshot shows how all the tinyAVR parts will fit on one 11×17 ledger-sized or B-sized sheet of paper.

I started with an Excel dump of the selector guide after adding every single parameter to the search. I then took all the tinyAVR parts, and rearranged the columns, throwing out the irrelevant ones. I also combined the automotive parts with the basic parts. That added two columns for automotive temp and automotive Vcc range. Adding 2 columns to remove 13 rows seemed like a good deal. The part name links to the product page on our website.

I made a column for each package. That took a long time. Semiconductor companies think of a part as the silicon die, with the package being almost irrelevant. We systems folk know the package might be the most important thing. I tried to put the smaller packages on the left, with those big ol’ DIP (dual-inline plastic) parts on the right side. There is a second sheet in the spreadsheet that shows all the parts by number and there I put the package size, in mm. In both sheets, the package name links to the definition page on our website.

ATtinyAVR-product-line_2014-08-20_sheet-2

The second sheet of the spreadsheet shows all the tinyAVR parts by number. I put the exact package size on this page.

Besides the packages and package size, I also spent a long time getting pricing. My buddy Wayne Yamaguchi requested this, and he is absolutely right, price is the most important spec of any part, and I hate when it takes 5 clicks to find it. These prices are a bit sketchy. All I did was click on the “Buy” link and select a handful of parts from each family, and then looked at the Digi-Key price, in 1000s. I put in the highest and lowest of the few I selected, but this is by no means scientific or dispositive, as the lawyers would say. What I should do is put the price in the “Package” column, so you know what the package is and what price we charge, but many parts are in the same package but have two Vcc ranges, so there is no unique way to encode this and keep the spreadsheet on one printable page. Maybe I can blow out the second page to show every orderable part number and its price and specs. Always time to do it over, never time to do it right.

The major thing I want to add is the OrCAD 9.2 footprint name for the packages. I am afraid to do this now, since we have all been burned by narrow-DIP/wide-DIP and narrow -SOIC/wide-SOIC and what pin numbering to use on SOT parts, so that will have to wait for next time. If anyone has a proven definitive list of the OrCAD footprints, please let me know. paul.rako[yeah, the at sign]atmel.com

You can highlight all the parts and use the “Data>Sort” function to order them any way you want. I did it by Flash memory size and part name. You can also use the little filter boxes on each column to include or exclude, or even put in a logical range with equal or less than or all the other things. Its not exactly grep or regular expressions, but it can get the job done helping you to find the right part.

Spreadsheet-filter-function

Excel filter boxes let you select just the parameters you care about.

I am told this spreadsheet works OK in Open Office/Libre. My pal Dave asked that any columns that are filtered be lit up red, but that takes a macro, and the VB macro may not work in Open Office, we are checking for that. Meanwhile, check there are 36 part families or that the little filter box does not have 3 pixels different to show the filter is on.

Microscopically-differerent-filter-icon

When you have filtered a column, it is almost impossible to tell, since the only indication is the icon makes this 3-pixel change.

Weasel weasel, CYA CYA, legal boilerplate—this is a hobby job, not an official Atmel document. If the selector guide had it wrong, it is wrong here too. I made my own mistakes too. And I already told you the pricing and the tiny1634 stuff was dicey. What I am hoping is that I can get some community support where you point out the errors, and tell me what to add. paul.rako[yeah, the at sign]atmel.com I also ask that you send this URL link to your pals, instead of just emailing the spreadsheet. That way the bosses will see you like this, and I can have the time to keep working on it.

Hans-Camenzind_tinyAVR-spreadsheet

If Hans Camenzind, the inventor of the 555 timer chip was still alive, he might have a copy of the tinyAVR spreadsheet up on his office wall. I miss Hans, at least he came to my Analog Aficionados party one year, before we lost him to the Grim Reaper.

 

What will smartphones look like in 2020?

Thanks to Moore’s Law, electronic devices are increasingly packed with more power and functionality, improving our life qualities with more convenience, productivity, and entertainment. Just to put things in perspective, Steve Cichon of Trending Buffalo shows that an iPhone (assuming an iPhone 5S at the beginning of 2014, when his blog was written) can replace $3,054.82 worth of electronics sold in Radio Shack in 1991, according to a flyer post in The Buffalo News.

radioshackad

“It’s nothing new, but it’s a great example of the technology of only two decades ago now replaced by the 3.95 ounce bundle of plastic, glass, and processors in our pockets,” says Steve Cichon.

As cool as we think our smartphones are today, I dare to say that two decades later by 2035, when people compare their personal electronics (assuming they don’t use the term “smartphones” anymore!) against the current smartphone features, they would be amazed by how big, heavy and slow these electronics are today. If you still don’t get what I mean, take a look at this 1991 Sony Walkman Commercial, and try to recall how cool the Walkman was in 1991.

While I certainly do not have the crystal ball that tells me what kind of personal electronic devices people will be using by 2035, I would like to make a few guesses of what smartphones would look like in just 5 years, say 2020.

User Interface

I believe touchscreen [with touchscreen controllers] will still be the main user interface for smartphones by 2020. While Generation Z are called “digital natives,” I think kids who are born after Generation Z would be “touch natives.” Toddlers and young children playing with iPod Touch, iPhone and iPad today will attempt to touch all display interfaces as their way of interacting with electronics in the coming years. I also believe smartphone interfaces would expand beyond just touch, and there are two possible expansions within five years: gesture controls and voice commands.

Gesture control refers to hand or facial interactions with the smartphone.  Samsung’s Galaxy S4 (with Air View) and Amazon’s Fire Phone (with 4 corner cameras) made interesting attempts for enabling hand and facial gesture recognition, but unfortunately, these features were not very successfully adopted by consumers because they were hard to learn, limited by hardware capabilities, and unreliable or inconsistent to use. But smartphone OEMs will continue improve their designs, and smartphones will eventually be capable of reliably recognize our intentions by tracking our hand or eyeball motions, or facial expressions.

Voice command is widely popular today, but will become a lot more useful in five years. Think of Apple’s Siri, Google’s Google Now and Microsoft’s Cortana, as cloud computing becomes more artificial intelligent with more data and computational power, they will become more dependable for average consumers to adapt. I hope that by 2020, my daily commutes with Apple’s Siri will no longer be worse than talking to my 2-year old son — Siri will help me change FM radio channels or launch a Podcast via Carplay in my dashboard. I will also be able to ask Google Now to order a pizza for me (topped with bacon, pepperoni and sausage, of course) without directly talking to the pizza-shop guy. Google Now will tell me when the pizza might arrive (based on the traffic congestion conditions), and open the door for me through my Nest, which as a Bluetooth connection to my front door’s electronic lock.

Integration

Needless to say, smartphones will be further integrated come the year 2020. Smartphone integration will follow a much similar path as the PC’s integration, except it will take place A LOT faster. Integration doesn’t always mean electronic components will disappear; rather, it can also mean that more hardware performance is integrated into the device. Today’s leading smartphones are packed with a Quad- or Octa-core Application Processor, running between 1.3 to 2.5GHz. By 2020, I’m guessing that smartphone CPUs will be 8 to 16-cores, running between 2.5-4.0 GHz range, (they probably will eat today’s Intel Core i7, designed for high-performance PCs, for lunch.)with 8-10GB RAM and 500-750 GB of storage.

I also believe smartphones will integrate more hardware components for better “context-awareness.” Today’s leading smartphones are easily packed with 10 sensors — gyro, ambient light, accelerometer, barometer, hall sensor, finger scanner, heart rate monitor, among a number of others. I think more microphones (today’s camera usually has at least two microphones) and cameras (again, at least two today) will be packed into the devices to enable improved awareness — 4, 6 or even 8 microphones and cameras are quite possible by 2020. For instance, having multiple microphones enables listening from different positions inside the phone and at different frequencies (i.e. not only voice commands); in addition, it will allow the smartphone to determine its location, its surroundings (whether inside or out) how far it is away from the voice command and even how to improve noise cancellation. Also, having multiple cameras will allow the device to better track facial expressions (Amazon’s Fire Phone is a good example), to capture better 3D and panorama images, or to refocus photos by post-processing (hTC One M8 is a good example).

Further, component-level integration will continue to happen. With increasing applications processor power, the A/P will be able to take over many digital processing from discrete components inside the phone, although I think Sensor Hub will continue to drive low-power, context-awareness tasks while the A/P sleeps.

Display Technology

Do you envision 4K displays (i.e.3840 x 2160) on your smartphone? Today, Apple’s “Retina Display” in the iPhone 5S offers a 326 pixel-per-inch, and many new smartphone displays exceed that pixel density. Smartphone displays are increasing in sizes, moving from 3.2″ and 4″ just a few years ago to 4.7″, 5.2″, 5.5″ and even 6.4”. As the screen sizes increase, as will the display resolution, while keeping the high PPI density.

I think both LCD and AMOLED displays will continue to exist in 2020, as both technologies have their advantages and disadvantages for smartphone applications. From a consumer perspective, I would expect both types of displays to improve on resolution, color accuracy (for example, Xiaomi’s latest Mi4 display has a color gamut covering 84% of the NTSC range, and that’s even better than Apple’s iPhone 5S display), power consumption and thinner assembly allowing for slimmer industrial design.

As smartphones with 2K displays be introduced by the end of 2014, it isn’t unreasonable to say that 4K displays would be used in smartphones, perhaps by or even before 2020.  However, everything has a cost, and the extra pixels that our human eye cannot resolve will consume power from the graphic engine. Would you prefer to trade off some pixel densities with longer battery life? Personally, I think we do not need a 4K smartphone screen. (And yet, I may laugh at myself saying this when we look back five years from now.)

Battery Technology

The thirst for more power is always there. With increased processing capabilities, context-awareness and better display technologies, we can only assume that future smartphones will require more power than what they are carrying today. Today’s top-tier smartphones can package a battery around 3000 mAh. That’s plenty of juice for a day, but consumers always crave for longer battery life or more powerful smartphones with longer video streaming time. Luckily, research on new battery technologies have been increased, thanks to the explosion of portable electronics. I believe there are two types of technologies that will be available and improve our smartphone experiences by 2020:

Battery with higher density: Forbes recently reported that a group of researchers at Stanford University designed a new solution to increase the capacity of existing battery technology by 400%. This is just one of the promising researches we’ve seen in recent years that could one day be deployed for mass production in just a few years. For the same size of battery that lasts for a day of use in 2014, we can expect that smartphones will last for a week without charging by 2020. On the other hand, smartphone OEMs can also select to use a smaller size battery in the smartphone, and in exchange, use the extra room inside the smartphone to integrate other components and features.

Battery with rapid charging capabilities: A gadget-lover’s dream is to get a full-charge of their smartphones within 5 minutes of charging. Today, UNU’s Ultrapak battery pack can deliver a full charge to devices after just 15 minutes of charging itself up. This isn’t to say the technology is ready for smartphone integration, due to various reasons; however, we’re seeing smartphones adopting rapid charging technologies today (such as Oppo’s Find 7) and we should expect that smartphones will have a much shorter charge time thanks to various rapid-charging standards, such as Qualcomm’s Quick Charge 2.0. Several smartphone models have adopted this standard, including Xiaomi’s Mi3, Mi4, Samsung Galaxy S5 and hTC One M8.

Smartphone Camera

Last but certainly not least, I think smartphone cameras will certainly undergo many improvements by 2020. In fact, the smartphone camera performance is one of the features driving smartphone sales. A safe and simple prediction is that camera’s pixel density would continue to increase as CMOS sensor technology advances. Today, Microsoft’s Lumia 1020 has 41 megapixels, yet I don’t see an average consumer needing that many pixels even by 2020. Personally, I would be very happy with a camera that offers 15-20 megapixel — good photographers understand that pixel isn’t the only determining factor for a good camera, as it is only one of the key aspects.

I am not expecting the camera in a smartphone is capable of optical zooming. Instead, I’d much rather have a smartphone that’s light and portable. In fact, today’s smartphone cameras are pretty good by themselves, but there are always improvements can be made. I think the iPhone 5S cameras can be better with image stabilization, the Galaxy S4 camera can be better with faster start-up and better low-light sensitivity, and the hTC One M8 camera can be designed better with more pixels and improved dynamic contrasting.

Here is a my wishlist for a smartphone camera that I would carry around in 2020, and it’s perhaps not the “2020 Edition of Lumia 1020” camera:

  • 20 megapixel with Image Stabilization, perhaps a wide, f/1.0 aperture
  • HDR, Panorama view
  • Excellent white balance and color accuracy
  • Excellent low-light sensitivity
  • Full manual control
  • Extremely short start-up latency, and fast and accurate auto-focus
  • 4K video recording @ 120fps (with simultaneous image recording)

I may not be a fortune teller, but there you go… that’s my prediction for what a smartphone will look like in the year 2020. Would you be interested in spending your hard-earned dough in 2020 for a smartphone with the above spec? Everyone has an opinion on what the future entails, and my idea of a smartphone five years from now are as good as those of the readers of this blog. I think we would all agree that the advancements in technology will continue to improve the quality of lives. As smartphones become more personal and depend ended upon, we’ll all reap the benefits from the smartphone evolution.

 

For I have seen the shadow of the curved touchscreen

Last year’s CES was the modern technology equivalent of the voyage of Ferdinand Magellan, proving beyond any shadow of doubt displays no longer can be thought of as only flat. While the massive curved 105-inch TVs shown by LG and Samsung drew many gawkers, the implications of curved touch displays are even wider.

At DAC 50 there were more than a few chuckles and some mystified looks when Samsung’s Dr. Stephen Woo spent a lot of his keynote address highlighting flexible displays as one of the challenges for smarter mobile devices (spin to the 27:41 mark of the video for his forward-looking comments). I think if we had polled that room at that second, there would have been two reactions: 1) yeah, right, a flexible phone, or 2) hmmmm, there must be something else going on. His comments should have provided the clue the flat display theory was about to dissolve:

Is there any major revolution coming to us? My answer to that is yes. I’m afraid that we as EDA, as well as the semiconductor industry, are not fully appreciating the magnitude of the revolution.

Woo showed the brief clip from CES 2013 introducing the first Samsung flexible display prototype, hinting that while exciting, it is still a ways from practicality. Why? He went on to explore the rigid structure of the current high volume smartphone – flat display, flat and hard board with flat and hard chips, and a hard case. I have some unpleasant recollections of trying chips on flex harnesses in the defense industry, and the problems become non-trivial with bigger parts and shock forces coming into play, not to mention manufacturing costs.

We might be getting thrown off by the limiting context of a phone as we know it. A gently curved but still fixed display poses fewer problems in fabrication using current technology. Corning has announced 3D-shaped Gorilla Glass, and Apple, LG, and Samsung are all chasing curved display fabrication and gently curved phone concepts today.

The real possibilities for smaller curved displays jump out in the context of wearables and the Internet of Things. The missing piece from this discussion: the touch interface. Flexible displays present a challenge well beyond the simplistic knobs-and-sliders, or even the science of multi-touch that allows swiping and other gestures. Abandoning the relative ease of planar coordinates implies not only smarter touch sensors, but algorithms behind them that can handle the challenges of projecting capacitance into curved space.

Illustrating the potential for curved displays with touch interfaces in automotive design, AvantCar debuted at CES 2014. Courtesy Atmel.

 

Atmel fully appreciates the magnitude of this revolution, and through a combination of serendipity and good planning is in the right place at the right time to make curved touchscreens for wearables and the IoT happen. With CES becoming an almost-auto show, it was the logical place to showcase the AvantCar proof of concept, illustrating just what curves can do for touch-enabled displays in consumer design. (Old web design axiom, holds true for industrial design too: men tend to like straight lines and precise grids, women tend to like curves and swooshes – combine both in a design for the win.)

The metal mesh technology in XSense – “fine line metal” or FLM – means the touch sensor is fabricated on a flexible PET film, able to conform to flat or reasonably curved displays up to 12 inches. XSense uses mutual capacitance, with electrodes in an orthogonal matrix, really an array of small touchscreens within a larger display. This removes ambiguity in the reported multiple touch coordinates by reporting points independently, and coincidentally enables better handling of polar coordinates following the curve of a display using Atmel’s maxTouch microcontrollers.

Utilizing fine line metal - copper etch on PET film - Atmel's XSense touch sensor is able to conform to gently curved displays.

 

Now visualize this idea outside of the car environment, extended to a myriad of IoT and wearable devices. Gone are the clunky elastomeric buttons of the typical appliance, replaced by a shaped display with configurable interfaces depending on context. Free of the need for flat surfaces and mechanical switches in designs, touch displays can be integrated into many more wearable and everyday consumer devices.

Dr. Woo’s vision of flexible displays may be a bit early, but the idea of curved displays looks to be ready for prime time. The same revolution created by projected capacitance for touch in smartphones and tablets can now impact all kinds of smaller devices, a boon for user experience designers looking for more attractive and creative ways to present interfaces.

For more on the curved automotive console proof of concept, check out Atmel’s blog on AvantCar.

What do you think of the emergence of curved displays and the coming revolution in device design? How do you see curved touchscreens changing the way industrial designers think of the user interface on devices? Looking out further, what other technological improvements are needed?

This post has been republished with permission from SemiWiki.com, where Don Dingee is a featured blogger. It first appeared there on January 10, 2014.


ARM @ Atmel’s EELive! ToT booth

ARM’s Andy Frame stopped by Atmel’s EELive! 2014 ToT booth to chat with our very own Andreas Eieland (@AndreasMCUguy), who looks after Atmel’s SAM D Cortex-M0+ based family of devices.

As you can see, Frame snapped a great picture of Andreas standing next to Atmel’s tricked-out Tech on Tour Truck which travels around the US showcasing a wide range of Atmel-powered products, including those based on ARM’s Cortex-M and Cortex-A5.

ARM’s Ronan Synnott was also at Atmel’s EELive! booth giving a presentation about ARM’s DS-5 support for Atmel SAMA5D3 devices. Ronan described how, with DS-5 Professional Edition, ARM provides a leading-edge software development tool chain for bare-metal, RTOS and Linux based projects. 

For the SAMA5D3 devices, ARM offers full debug support out of the box when used in conjunction with DSTREAM or ULINKproD JTAG debug units, the Streamline System Performance Analysis tool and the highly optimizing ARM C compiler.

We hope to hear more from Ronan over the next few weeks, so be sure to check Bits & Pieces for additional embedded news and reports.

Meanwhile, Atmel’s Tech on Tour trailer will be headed to Austin, Texas on April 8th. We’ll be talking about low-power system design using Atmel’s ARM-based SAM4L MCU, touch and wireless solutions, as well as offering an introduction to Atmel’s versatile SAM D20 microcontroller.

atmeltot

Interested in learning more? You can register here and check out future ToT stops here.

EasyPlug is an Arduino sensor shield



EasyPlug — designed by InXus Interactive — is a versatile sensor shield for Arduino boards. According to a company rep, the EasyPlug allows Makers to connect a plethora of sensors to their board in just seconds.

Key shield specs include:

  • 

6 analog sensor inputs
  • Compatible with VERVE sensors
  • Supports standard “analogRead(pin#)” command
  • Uses any 3.5mm stereo cable
  • Equipped with mounting holes
  • Includes 6 unique colored cables (so sensors aren’t confused)
  • Stackable with other shields
  • No soldering required

“All of our sensors are designed to be easy to use, right out of the box. Plug in a cable (provided) and the sensor is ready to go,” InXus rep Jordan Linford explained in a recent Kickstarter post.

“We’ve picked the most useful and fun sensors for you. But we’re adding more all the time, so you should be able to find a sensor to fit your needs.”

Current EasyPlug sensors include those to measure/monitor force, touch, light, turns, pushbuttons, motion, magnets, sound and temperature.

“Last but not least is the DIY sensor. This sensor is meant for people who already have some background in electronics and want an easy way to connect their sensors to an Arduino,” said Jordan.

“The DIY sensor contains 0.1” spacing GND, signal, and 3.3V pins. It also has on-board pull-up and pull-down breakout pins that accept through-hole resistors. If you need more room or have more complicated analog sensors, you can plug the DIY sensor into your breakout bread.”

Interested in learning more? You can check out the project’s official Kickstarter page here.

Atmel’s Tech on Tour heads to Napa

After a successful Tech on Tour (ToT) stop in San Francisco’s SoMa neighborhood, the Atmel Mobile Training Center is heading to California’s sunny Napa Valley.


We’ll be at the Meritage Resort & Spa on 875 Bordeaux Way on March 23-24, 

showcasing a wide variety of tech across a number of spaces including touchsecuritymicrocontrollers (MCUs), wirelesslighting and automotive.

More specifically, you can check out:

In addition, Sander Arts, VP of Corporate Marketing at Atmel, will be hosting a session on easy-to-use, fully integrated solutions for University students at 12:30 pm on March 23 in the Carneros Ballroom.

“In this short session, students will see how Atmel provides a broad portfolio of hardware and software solutions that are easy-to-use and cost-effective for the classroom environment. Our boards and software development kits provide students hands-on training with some of the latest electronics for developing fun applications using Ardunio-based boards to Atmel’s own development solutions,” Arts told Bits & Pieces.

“They will also hear about Atmel’s revamped University Program and how we are using our latest social media channels, mobile trailer, challenges and competitions to engage with University students.”

Interested? You can register for the event here.

Atmel’s Tech on Tour heads to SF



After successfully wrapping up SXSW 2014 in Austin, Atmel’s Tech on Tour (ToT) trailer is back on the road to the Bay Area – with a long-awaited San Francisco SoMa stop scheduled for March 18, 2014.

We’ll be at China Basin, Lot C @ 185 Berry Street (between 3rd and 4th) from 10AM-6PM, showcasing a wide variety of tech across a number of spaces including touchsecuritymicrocontrollers (MCUs), wirelesslighting and automotive.

More specifically, you can check out:

Atmel’s ToT will also be hosting an industry panel on the rapidly evolving Internet of Things (IoT) at 4:00PM.

Join industry experts from Atmel, ARM, Humavox and August for an interactive discussion on how the IoT, the hottest topic in the technology sphere, is impacting today’s market across multiple segments.

Interested? You can register for the event here. See you in SoMa!!!

Atmel is ready to rock @ SXSW!

Atmel’s Tech on Tour trailer is on the road again and heading to Austin, Texas for SXSW. We’ll be at the Hyatt Regency Austin from March 7-9, 2014, so be sure to stop by during the show to see our latest demos.

We’ll be showcasing a wide variety of tech across a number of spaces, including touch, security, microcontrollers (MCUs), wireless, lighting and automotive.

More specifically, you can check out:

In addition, we’re proud to host a guest appearance by Autodesk, the very same folks behind the world famous Instructables and 123D Circuits.

With 123D Circuits, you can breadboard and simulate your AVR-powered Arduino-based circuits, while writing, compiling and running code right in your browser. When you’re done, you can have the circuit board professionally made and shipped right to your doorstep.

Interested in learning more about Atmel’s tech on tour? You can check out our official ToT page here.

Interview: Jean-Noël talks Ootsidebox

Jean-Noël says projected capacity is the primary principle behind his Atmel-powered Ootsidebox, with an electric field projected in front of the existing touch surface affected by movements of the hand. Simply put, it is possible to calculate 3D coordinates and recognize certain gestures by measuring the perturbations of an oscillator caused by the movement of the user’s fingers (or an object) at several centimeters from the control surface.

Recently, Atmel’s Tom Vu had the opportunity to discuss the Ootsidebox with product inventor Jean Noel Lefebvre. 

Tom Vu:

What is the basic history of Ootsidebox?

Jean Noel: I kicked off this project 6 years ago and have worked on it full time since March 2013. Most of the parts used to construct  Ootsidebox are actually off-the-shelf electronics.

ootsodebox1

More specifically, I used the Atmel AT90USB1286 microcontroller (MCU) to power the device. Currently, I am exploring the possibility of meshing the popular Unity 3D gaming Engine with Ootsidebox. Combining a well known gaming engine will help us tease out more latent, long-term potential for the project, while simultaneously expanding the boundaries of game play with touchless or hybrid touch/touchless technology.

TV: How does Ootsidebox differ from other touchless and gesture sensor solutions?

JN: First of all, there is nothing at the center. For the microchip solution, you need a center electrode with two layers integrated within the body. In contrast, Ootsidebox is designed to be platform and device agnostic. In fact, the incasing can be modeled to fit around existing technologies and devices. Take, for example, example, the Android or iPad. The idea that you can simply wrap this touchless interface around existing devices and products opens new possibilities while enhancing use-cases for existing devices.

ootsidebox2

With this external fitting, much like an accessory, one can quickly enable their devices to be touchless, with gestures executed from within 10cm (set to double very soon) at maximum in front of a small screen. The device can be used in many different scenarios. For example, say you are in the kitchen cooking with greasy hands filled with sauce. The Ootsidebox can be set to seamlessly interact with various kitchen appliances – without the user ever having to touch knobs, buttons, glass, dials or sliders. Instead, activating/adjusting appliances can be performed via simple gestures (left to right or circular motions). Of course, there are many additional applications that can benefit from a touchless interface, ranging from home consumer device, gaming, health or even industrial uses.

TV:  Can you tell me more about the product design?  Is there any particular reason you chose Atmel AVR?

JN: The design is very simple, using only well known “stock components” found on any distributor or reseller site. The more complex part may be found in the 14bits DAC in SPI. Most of the components are “old school” logical chips such as 4000 family (my best friends for a long time in electronics). As for the microcontroller, I didn’t need high performance uC, so 8 bits were enough. The idea is to prepare Ootsidebox for mainstream adoption via a strategy of simplicity, a philosophy which fits well with Makers and the open source community. In terms of selecting the appropriate uC, I was careful to precisely balance price and performance. I also took into consideration various factors such as the large AVR community, availability of open source libs and the quality of the support and tools from the chip manufacturer. The mindset, reputation and philosophy of the brand (Atmel and Arduino) helped steer my uC choice. In fact, startups today are very closely tied to Maker Movement, reflecting Arduino and Atmel. That’s why I’m very confident when choosing Atmel, because Atmel and the Arduino community really support the Maker Movement today.

TV: How does Ootsidebox differ from other platforms on the market?

JN: It’s really a control device that computes touchless gestures versus touching and manipulating. Most of us are quite familiar with the ongoing touch revolution, as we use the very same interface interacting with smartphones and tablets on a daily basis. In addition, there are already commercially viable products such as Android devices equipped with sensor hubs that are designed to process gestural movement of the hand.

ootsidebox3

Ootsidebox differs on many levels, as the device is meant to be an add-on or fitting to an already existing device. Easy modification will encourage HMI enhancements for existing products or emerging devices. Remember, a consumer/user does not have to be married to just one product line from a major manufacturer. With Ootsidebox, you can control the devices without touching; move up, down, side-to-side, rotational, and even emulating the click of a button. Perhaps most importantly, the touchless interface will undoubtedly inspire future design roadmaps. For example, the touchless form factor is perfect for industrial and medical use. Just imagine a dentist needing to activate or handle various devices during treatment when messy hands are not necessarily ideal.

TV: What is the future of Ootsidebox? Do you plan on making it open source?

JN: Yes, there are plans to launch a campaign on Kickstarter or Indiegogo to attract more involvement in the development and use of this touchless sensor solution. The platform and innovative slope for additional development is limitless. We plan on releasing Ootsidebox as open source / open hardware, complete with specs for mechanical design. Crowdsourcing will help spur additional innovation, while allowing the platform to accommodate a wider degree of functionality. 

TV: How do Hackerspaces influence your work?

JN: A few years ago, disruptive products and ideas were conceived in garages. Today, the very same process takes place in Hackerspaces, where creativity thrives and technical skills abound. By designing projects in Hackerspaces, Makers and engineers are fully connected with a worldwide network of creative people boasting different backgrounds. This synergy significantly accelerates the innovation process.

TV:  What is your personal experience with AVR microcontrollers (MCUs) and Arduino boards?

JN: I was using other brands before I discovered the benefits of AVR uC during my discussions about Ootsidebox with my friends at Elektor Labs.

ootsidebox4

Also during my stay at Noisebridge Hackerspace, Mitch Altman was using AVR Arduino to teach electronics for newbies (I really love what’s happening there). My first experience with the Arduino environment was with Teensy++ 2.0, based on the AT90USB1286 MCU. This Atmel AVR microcontroller is the one I used for my last prototype of the Ootsidebox tablet accessory, which will be launched soon on Kickstarter or Indiegogo. We are also working on a smaller project with Elektor Labs. Essentially, it’s a “3D Pad” built in the form of a shield for Arduino.

TV: Are touchless gestures the future of user interfaces?

JN: Touchless gestures are a part of the natural evolution of the more traditional user interface. It’s a way to provide a more natural and intuitive user experience, which is somewhat of a growing requirement due to the proliferation of complex equipment in our everyday life. Of course, touchless gesture interaction is also more natural. In the future, with the help of Ootsidebox technology, product designers and Makers will not create electronic platforms to “manipulate” or “interact” with devices, but rather, for individuals to directly “communicate” with them instead.

Really, people expect them to be as smart as living entities. I learned that during various discussions with scientists about the project. In the brain, “communicating” vs. “manipulating” simply does not invoke the same connections pathways. Clearly, touchless and gesture UI are paving the way to a very fascinating evolution of consumer electronics in the near future. That being said, I see touchless user interfaces complimenting, rather than replacing, multi-touch, much the same way the mouse didn’t replace a keyboard.

Clearly, this kind of technology can help save lives, while reducing nosocomial risk in healthcare environments. It may also allows drivers to stay more attentive to the road when navigating with gesture-based infotainment. Personally, I’m dreaming of disruptive aesthetic designs in the field of high-tech consumer electronics. I can’t wait to see what a guy like Philippe Starck will be able to create. As I noted earlier, this project is 100% open and we invite everyone to participate on Twitter. Just post your questions and suggestions here: @OOTSIDEBOX, while including the hashtag #AtmelBlog. I’ll answer you personally. You can also check us out here on Facebook