Tag Archives: SAM4S

Novi is a 4-in-1 DIY home security system


Say goodbye to contracts, monthly fees and false alarms.


Did you know that four burglaries occur every minute in the United States alone? That’s a startling one every 15 seconds. The good news is that most convicted burglars (90%) claim they want to avoid homes with alarm systems, saying that if they did encounter an alarm, they would abandon the attack. However, the bad news is that nearly two-thirds of homeowners fail to turn it on at all times. And, when it comes to security, many are often faced with expensive systems and pricey monitoring fees. Understandably so.

12471337_1222782587738909_6064261952724678011_o

However, one Provo, Utah-based startup is looking to change that with their new IoT solution. Novi Security is a 4-in-1 DIY security system that’s making it increasingly easier for homeowners to install small detectors throughout their house that can notify them of any motion or smoke — all without the need of contracts and monthly costs!

Seurit

The kit is comprised of a base station and sensors, and are equipped with an ATmega128 radio and an Atmel | SMART SAM4S processor. The battery-powered sensors are simply affixed to the ceiling and boast an HD camera, motion and smoke detectors, and siren. This allows the system to provide homeowners a peace of mind by sending a series of three photos right to their mobile device, while immediately emitting a siren if smoke or motion are recognized while away.

SmartphoneNovi

In the event that this occurs, the alarm will sound, the monitor will relay the images to the base station (plugged directly into a router), and the base station will transmit the photos over to an accompanying app. Once the alert is received on the smartphone, the user will then have the option to call for help, check in at home, arm/disarm, as well as request more pictures for greater clarity.

Prometheus lets you make circuit boards in minutes


While it may look like a 3D printer, Prometheus is a PCB milling machine that carves, drills and shapes your PCBs so you don’t have to wait for a delivery truck.


While open source hardware has dramatically reduced the time and cost associated with product development, there are still a few speed bumps that Makers and designers must endure en route to taking their idea from prototype to mass production. Looking to change that is Rocco Tuccio, who together with his Zippy Robotics team, has built a desktop machine that can create real circuit boards in a matter of minutes. Meet Prometheus.

CTJYytFWIAAm8jI

“When we’re prototyping, we need a tool that can give us nearly instant feedback — not feedback that comes in a few week’s time in the form of a PCB delivery. Let the PCB manufacturers make the hundreds or thousands of boards for your production run — not your prototypes. If production is your goal, Prometheus will help get you there faster,” Tuccio explains.

Prometheus works by carving through the copper layer of a standard copper-clad board (FR-4 or FR-1). Essentially, it can be thought of as mechanically etching the PCB as opposed to dealing with chemicals to perform the etching. Prometheus can also drill holes and route the shape of the board itself if you need it to fit a specific enclosure.

CT8Qg_iW4AIKN19

Surely the ongoing desktop fabrication revolution has yielded similar equipment, but what makes Prometheus stand out from others on the market is its unique spindle. This mechanical part’s incredible specs speak for themselves — 45,000 RPM and a static Total Indicated Runout (TIR) of less than 2.5 microns (.0001 inches), measured 10mm below the spindle bearing.

“TIR is important because it determines the minimum bit diameter we can run. Too much runout (wobble) and a micro end mill will just snap instead of milling copper as intended. Prometheus can reliably run bits as small as .007 inches in diameter, so you can use (with few exceptions) any surface mount components in your designs — not just ‘giant’ SOIC packages. This is a major differentiator with what’s available in our price class today,” Tuccio adds.

6e6e9d9411292e064677d65cf4ecb232_original

And they didn’t stop there, either. No other manufacturer makes a PCB milling machine and the design software to go with it. Zippy Robotics’ Circuit Factory program works seamlessly with Prometheus, enabling you to devise your schematic and board layout quickly and easily, even if you’ve never designed a PCB before. Once completed with your mockup on Circuit Factory, simply click the ‘carve’ button and Prometheus will take care of the rest. 

In terms of hardware, Prometheus boasts its own custom motor controller which is built around an Atmel | SMART SAM4S Cortex-M4 MCU. The machine features USB plug-and-play connectivity and will soon come with its own free Java API that will let anyone write their own software using a set of commands called ZippyTalk. (This is how Circuit Factory communicates with Prometheus.)

“It will allow a software developer to control Prometheus so that they can write their own apps to make particular tasks easy. They can then give those apps away or sell them, without restriction, to the benefit of all Prometheus users. You don’t have to know anything about G-code. G-code is a relic from the ’70s and it’s time we moved on to better things,” Tuccio explains.

4f632ef54ad3781538e338c051e45fde_original

With its incredible XY resolution and its ability to mill out traces and spaces as fine as 0.007 inches from any standard copper-clad PCB material, Prometheus is arguably one of the most advanced gadgets in its class. These traits will put Zippy Robotics toe-to-toe with other professional grade machines out there, which keep in mind, cost more than $8,000. This unit’s price tag, however, is a fraction of that.

Not only a great product, but an outstanding team behind it as well. We’ve had the pleasure of getting to know Tuccio and the New York-based startup for several years now, and have witnessed the progression of the desktop-friendly device — from its earlier and bulkier versions to its latest compact, commercial-ready form factor.

Tired of waiting for delivery and rather have your own PCBs just a click away? Head over to Prometheus’ Kickstarter campaign, where the Zippy Robotics crew is currently seeking $95,000. Delivery is slated for sometime next fall. Trust us, it’ll be worth the wait!

ReVault is the world’s first wearable private cloud


Not just a smartwatch, ReVault lets you back up and access your files on the go.


We know, we know, another smartwatch? But before you say anything else, this wearable band has a rather unique feature. Not only can it reveal the time, it can impressively act as a wireless storage device that lets you back up your files and open them without ever needing an Internet connection. Think about it, in this day and age of multi-screen use, everyone has data that they want to access to on all of their gadgets. And sure, many of us tend to employ popular services like Dropbox or OneDrive to accomplish this; however, local storage happens to be a bit more secure.

Watch

Cognizant of this, one Swedish startup has set out to make the private cloud a little more personal and portable with ReVault. Currently live on Indiegogo, the Atmel | SMART SAM4S powered gizmo is being billed as “the world’s first wearable private cloud” that enables users to securely access and sync all of their files. Instead, the wearable drive connects to a laptop, smartphone or tablet over Wi-Fi and Bluetooth.

Watch2

Not only does ReVault allow wearers to easily carry their most important documents wherever they go at all times, but once connected, it can be set to automatically back up and synchronize those files across all devices via its accompanying app. This application is available on Android, iOS, Windows, Mac OS X and Linux, meaning it should be pretty simple to pair data despite the platforms one may use.

ReVault has been designed with the utmost security in mind, and rightfully so. We are talking about personal and sensitive information here! This was accomplished through AES-256 encryption, as well as two-factor authentication. In other words, only trusted devices and users can connect to the wearable unit.

Devices

Aside from safeguarding data, the watch has been created with superior durability to withstand the inevitable bumps and scratches of everyday use. Equipped with a stainless steel and water resistant case, the full-color display is protected with Gorilla Glass 3. A wearer can also choose between a variety of faces, including one for private cloud data, a digital or analog clock, as well as a custom screen built with the ReVault API. Though the battery only lasts for approximately three days, ReVault can be charged using a standard Qi wireless charger — 80% battery life takes roughly an hour, while 100% calls for just about an hour and a half.

pmgpcxd3qcf48tzxciry

ReVault comes in both 32GB and 128GB models. What’s more, for those who aren’t really into the whole “smartwatch thing,” it can be transformed into a necklace or keyring using its chain converter. Is it time to reclaim your data? Then hurry over to its official Indiegogo campaign, where the team is closing in on their $65,000 goal. Shipment is expected to begin in January 2016.

Playing Tetris in SPARK on a SAM4S ARM Cortex-M4 MCU


Just when we thought we’d seen the ‘80s game played on nearly everything, a group of Makers have built it onto an MCU. 


For many, Tetris is simply a tile-matching video game originally designed and programmed by Alexey Pajitnov in 1984. However, for others, it inspires endless possibilities of Maker projects. Most recently, AdaCore’s Tristan Gingold and Yannick Moy have devised the highly-popular puzzle on an Atmel | SMART SAM4S ARM Cortex-M4 microcontroller.

board_tetris_zoom

“There are even versions of Tetris written in Ada. But there was no version of Tetris written in SPARK, so we’ve repaired that injustice. Also, there was no version of Tetris for the Atmel SAM4S ARM processor, another injustice we’ve repaired,” the duo writes.

The concept first stemmed from their colleague Quentin Ochem, who had been searching for a flashy demo for GNAT using SPARK on ARM, to run on the SAM4S Xplained Pro Evaluation Kit. Luckily, this kit features an OLED1 extension with a small rectangular display, which surely enough, immediately ‘SPARKed’ the idea of Tetris. Now, throw in the five buttons overall between the main card and the extension, and the team had all the necessary hardware to bring the project to life.

atmel_board

In total, the entire build took approximately five days to complete. Both Gingold and Moy advise, “Count two days for designing, coding and proving the logic of the game in SPARK, another two days for developing the BSP for the board, and a half day for putting it all together.”

For those unfamiliar with SPARK, it is a subset of Ada that can be analyzed very precisely for checking global data usage, data initialization, program integrity and functional correctness. Mostly, it excludes pointers and tasking, which proved not to be a problem for Tetris.

board_tetris-1

While we’ve seen the retro game played on everything from t-shirts to bracelets, we’ve never experienced the game literally on an MCU. As the team notes, all of the necessary sources can be downloaded in the tetris.tgz archive, while those interested in designing one of their own can find a detailed breakdown of the entire build here.

TomTom Runner teardown reveals ATSAM4S8C inside

Back at Maker Faire Bay Area in May, the iFixit team took a deeper dive into the technology that is powering some of today’s sports watches, like the TomTom Runner. During its teardown, the iFixit team revealed that the wearable device was powered by an Atmel ATSAM4S8C.

The popular GPS sports watch is equipped with a built-in heart rate monitor, a large monochrome LCD display and one-button control. In addition, the TomTom Runner is embedded with an accelerometer and sensors allowing it to work both outdoors, indoors and even on a treadmill, thus providing providing a user with the kind of data they’d expect to find on most sports watches — such as distance, pace, stride length, calories burned and lap times all in real-time. Bluetooth Smart support also enables a user to sync the Runner with other devices, including a heart rate strap.

RUN_GREY_Race_MI_tcm137-56763

Based on ARM’s powerful Cortex-M4 core, the Atmel | SMART SAM4S lineup offers increased performance and power efficiency, higher memory densities (up to 2MB of Flash and 160KB of SRAM), along with an extensive peripheral set for connectivity, system control and analog interfacing. The SAM4S operates at 120MHz and integrates Atmel’s Flash read accelerator, along with optional cache memory to increase system performance. The SAM4S also features a multi-layer bus matrix, multi-channel direct memory access (DMA) and distributed memory to support high data rate communication.

So, how low is low in terms of power consumption? Well, the Atmel | SMART SAM4S family manages to achieve 200µA/MHz in dynamic mode at a low operating frequency; 30mA at 120MHz; and 1µA at 1.8V in back-up mode with the real-time clock (RTC) running. In short, it offers some of the best power consumption/performance rates on the market for standby mode, achieving 120MHz+ operating frequency with a RAM retention mode below 25µA.

sam4s16block

On the security side, the SAM4S prevents unauthorized access to on-chip memory, supports secure device reconditioning (chip erase) for reprogramming – while a 128-bit ID and scrambled external bus interface ensures software confidentiality as the hardware cyclic redundancy check (CRC) checks memory integrity. And last, but certainly not least, fitting a device with a SAM4S means easy access to Atmel Studio 6, which offers hundreds of ARM project examples with source code to streamline the design process.

Joining a number of other watchmakers, TomTom Runner is the latest device to feature an Atmel | SMART SAM4S microcontroller. If you recall, Secret Labs announced last year that their AGENT smartwatch was powered by both the SAM4S and tinyAVR microcontrollers.

For those interested in learning more, Atmel engineers have recently published 28 application notes for the company’s comprehensive Atmel | SMART SAM4S devices.

Report: Wearables need makeover to maximize market

According to a new Beecham Research report, the wearable tech market stands for a greater chance of mass consumer adoption if it can somehow up its chicness. The report notes that wearable devices will swiftly move beyond just smart glasses and watches to embrace products in a wider variety of sectors, such as safety, security, glamor and healthcare.

The fashion-forward wearable tech market could hit $9.3 billion by 2018, which would nearly triple the current market prediction. As validation of the uptick, ABI Research recently also predicted that the annual average demand for wearable devices will skyrocket by 22% during the period of 2013-2018, rising from less than 200 million units to 500 million.

d077ee7030305ec8e20d8b32fc3d221c_large

“Current market forecasts are based on smartphone-centric view of wearable technology,” explained Saverio Romeo, Principal Analyst at Beecham. “We see wearable tech as playing a critical role in the drive to greater connectivity and the Internet of Things.”

As previously reported in Bits & Pieces, smart wearable band shipments increased dramatically in the second half of 2013, with analysts at Canalys predicting a significant acceleration of the trend to continue this year. Over 17 million wearable bands are forecasted to ship this year alone, driven primarily by devices with wearable-specific sensors. More specifically, Canalys estimates this number will grow to over 23 million units by 2015 and over 45 million by 2017. In 2018, that number could swell to almost 112 million.

“There is a very strong focus on technology around wearable devices [which is] a problem as they should be user-centric,” Romeo added during the launch of the firm’s latest report.

According to Beecham analyst Claire Duke-Woolley, one of the areas that needs to do more to embrace wearable technology is in the fashion market. “If this market really is to take a different route, we should look at partnerships that we have never seen before, between technology companies and fashion,” she urges.

fitbit-tory-burch

While several companies currently offering smart watches prefer a more tech-centric approach, Beecham Research points to the new Withings Activité that merges Parisian design with Swiss watch making to create desirable, stylish and functional products. It also highlights the newly-unveiled Fitbit and Tory Birch collaboration as an example of how the fitness market is moving beyond the functionality of traditional products. Another sector where Beecham Research sees progress is in smart clothing and textiles, from the likes of Cute Circuit and Wearable Experiments, along with Studio XO, which exemplifies the right ethos and multidisciplinary approach, but is still to move beyond the couture end of the market.

Ranging from SAM4S to tinyAVR MCUs, Atmel finds itself smack in the middle of the rapidly-evolving wearable tech revolution. In addition, Atmel devices integrate numerous features to save circuit board space, such as USB transceivers and embedded termination resistors. Many devices are offered in very small form factor packages, a critical characteristic for engineers and Makers designing wearable tech and elaborated upon further in this wearable computing white paper.

Want to read more? Download the entire Beecham Research report entitled “Wearable Technology — the Fashion Tech Era: Towards a Multidisciplinary Approach.”

 

Winning with Atmel on Kickstarter



Kickstarter first opened its virtual doors on April 28, 2009. Since then, the wildly popular crowdfunding website has tracked over $1 billion in pledges from 5.9 million individuals who actively funded 59,000 creative projects.

Unsurprisingly, quite a number of Atmel-powered Kickstarter projects have been successfully funded over the past year, including:

MicroView



MicroView is a chip-sized platform with a built-in OLED (64×48) display that allows Makers to see what the Atmel-based board is “thinking” without having to link with a PC.

The device, designed by the Geek Ammo crew, is built around Atmel’s versatile ATmega328P microcontroller (MCU).



1Sheeld

Integreight’s 1Sheeld – designed around Atmel’s ATMega162 MCU – is an easily configurable shield for Arduino boards.

http://www.kickstarter.com/projects/integreight/1sheeld-replace-your-arduino-shields-with-your-sma

Essentially, 1Sheeld connects to a mobile Android app that allows users to take advantage of various smartphone features including the display, gyroscope, accelerometer, magnetometer, GSM, Wi-Fi and GPS.

DIWire



The first desktop CNC wire bender recently hit Kickstarter with an Atmel MCU (ATxmega192/TinyG) under the hood.

https://www.kickstarter.com/projects/1638882643/diwire-the-first-desktop-wire-bender

Designed by Pensa Labs, the DIWire transforms drawn curves into bent wire that can be assembled to make just about anything.

Primo



Primo can best be described as a playful physical programming interface that helps teach children programming logic without the need for literacy.

https://www.kickstarter.com/projects/1039674461/primo-teaching-programming-logic-to-children-age-4

Powered by an Atmel-based Arduino board, the Primo play-set uses shapes, colors and spacial awareness to instruct programming logic through a tactile, warm and magical learning experience

.

Robox



Robox is a 3D printing and micro-manufacturing platform designed byC Enterprise Ltd. (CEL).

https://www.kickstarter.com/projects/robox/robox-desktop-3d-printer-and-micro-manufacturing-p?ref=live

Driven by an ARM-based Atmel chip, the Robox was designed by its creators to “demystify” the 3D printing process.

The EX¹ 

The Atmel-powered (ATmega2560) EX¹ allows Makers and engineers to quickly print circuit boards on a wide variety of material.

https://www.kickstarter.com/projects/cartesianco/the-ex1-rapid-3d-printing-of-circuit-boards

Simply put, the EX¹ is helping to transform electronics and prototyping in the same way that conventional 3D printing revolutionized traditional manufacturing.

Touch Board: Interactivity Everywhere



The Touch Board is an Atmel-powered platform (ATmega32U4 MCU) that allows Makers to more easily create interactive and responsive projects.

The Touch Board can change the world around you by turning almost any material or surface into a sensor.

Flutter

Flutter is an open source Atmel-powered wireless platform with a 1000m+ (3200 ft) range.

https://www.kickstarter.com/projects/flutterwireless/flutter-20-wireless-arduino-with-half-mile-1km-ran

Protected from digital intruders by Atmel’s ATSHA204 which offers 256-bit AES hardware encryption, Flutter makes it easy for DIY Makers to build projects that communicate across a house, neighborhood and beyond.

Hex ‘Copter

Hex – powered by Atmel’s ATmega32U4 – is a 3D-printed nanocopter that can be controlled using the gravity sensors in a mobile device.

https://www.kickstarter.com/projects/1387330585/hex-a-copter-that-anyone-can-fly

Essentially, Hex imitates the movement of the smartphone or a tablet in the air. In addition, traditional throttle, elevator, aileron, rudder control systems can be used to operate your Hex.

ATtiny85 ISP!



Designed by Ben Escobedo, the open source ATtiny85 ISP! can probably best be described as a breakout prototyping board for Atmel’s ATtiny85/45/25 lineup.

https://www.kickstarter.com/projects/rullywowr/attiny85-isp-shrink-your-arduino-projects-with-eas?ref=live

The project’s goal? Allowing Makers to take advantage of the ATtiny85 chip’s potential, while using the familiar Arduino IDE and harnessing the super awesome support from the Arduino community.

Agent Smartwatch



Atmel’s SAM4S and tinyAVR MCUs are inside the Agent smartwatch which raised well over a million dollars on the crowdfunding website.

https://www.kickstarter.com/projects/secretlabs/agent-the-worlds-smartest-watch

The next-gen smartwatch offers brand-new technology, world-class developer tools, unparalleled battery life and Qi wireless charging.

Blinky Tape



BlinkyTape – powered by Atmel’s ATmega32U4 – is a portable LED strip with 60 pixels and an integrated USB-programmable light processor.

https://www.kickstarter.com/projects/740956622/blinkytape-the-led-strip-reinvented

Additional key specs include 32KB Flash memory, 2.5KB RAM, 1KB EEPROM, a micro USB connector for power and data, as well as an on-board micro switch for interactive applications.

Vega Edge



Made of laser-cut leather, the Atmel-powered, Arduino-based Edge is a wearable light that snaps securely onto your clothing with the help of four strong neodymium magnets.

https://www.kickstarter.com/projects/868814363/vega-edge

You can wear it discreetly by day or brightly at night with your winter coat, cardigan, hood, scarf, handbag, collar, pocket, belt, or wherever you’d like a touch of light.

The Open Enigma Project

Designed by the ST-Geotronics crew, the Open Enigma (M4) Project – powered by an Atmel-based Arduino Mega (ATmega1280) – first surfaced towards the end of 2013.

https://www.kickstarter.com/projects/438986934/the-open-enigma-project

When it went live on Kickstarter, the Open Engima successfully raised over $62,000, facilitating the implementation of several important stretch goals.

Skirmos: Open Source Laser Tag

Skirmos is an open source, versatile laser tag system that features an ATmega328P microcontroller (MCU), Arduino bootloader, color LCD screen (acts as a realtime HUD) and an infrared LED.

Skirmos currently offers a trio of preset gametypes: basic, free-for-all and team slayer. However, the platform is ultimately expected to boast an almost unlimited number of gametypes.

OSCAR: Open Screen Adapter



OSCAR is a super high resolution 9.7″ screen with an Atmel-powered (ATmega32u4) adapter that allows users to easily link the display to their PC, Mac or Linux machine.

https://www.kickstarter.com/projects/1859884318/oscar-the-open-screen-adapter?ref=live

The board is Arduino compatible ,which makes modifying the behavior easy, as all the software and hardware is open source.

DigiX

DigiX is an Atmel-based development board (AT91SAM3X8E) with WiFi and Mesh networking, Audio, USB OTG, microSD and 99 i/o pins.

https://www.kickstarter.com/projects/digistump/digix-the-ultimate-arduino-compatible-board-with-w?ref=live

The DigiX was designed to be a dev board ready for any project – with no compromises.

Reactor Core – Arduino/AVR Programmer, DIY Soldering Kit



The Reactor Core is a hardware programming platform for Arduino boards and stand-alone AVR-based microcontrollers (MCUs).

https://www.kickstarter.com/projects/1257390142/reactor-core-arduino-avr-programmer-diy-soldering?ref=live

Designed by Frank Fox, the Reactor Core is powered by Atmel’s ATmega328P MCU and an FT232R for USB to serial communication.

King’s Assembly Mouse

Solid Art Labs recently debuted the King’s Assembly – a unique device that packs a high-precision laser mouse, full mechanical keyboard and an analog joystick into a single platform.

https://www.kickstarter.com/projects/70308014/kings-assembly-a-computer-mouse-full-of-awesome

Atmel’s AT90USB128 MCU powers this three-in-one mouse. Key features include 30 keys for each hand, finger key rows angled for fast access and a two-axis analog joystick for each thumb.

Pi-Bot

The Atmel-powered Pi-Bot (ATmega328) is a hands-on robotic learning platform for both students and professional engineers.

https://www.kickstarter.com/projects/1158090852/pi-bot-the-next-great-tool-in-robotics-learning-pl?ref=category#

According to STEM Center USA CEO Melissa Jawaharlal, the team designed the Pi-Bot from the ground up to optimize functionality and ensure affordability.

Game Frame: The Art of Pixels



Game Frame – an Arduino-based grid of 256 ultra-bright LED pixels – was designed by Jeremy Williams to showcase pixel art and old school video games.

https://www.kickstarter.com/projects/jerware/game-frame-the-art-of-pixels

As Williams notes, video game artists used to draw everything with a sheet of graph paper, a few colors and a couple of animation frames.

Robot Army Starter Kit

The Robot Army is a DIY Delta Robot kit powered by Atmel’s versatile ATmega328 microcontroller for the rapidly growing Maker community.

https://www.kickstarter.com/projects/1984252088/robot-army-starter-kit?ref=footer

The kit includes all mechanical pieces in grey and neon yellow plastic (the yellow fluoresces under black light), spacers, brackets, ball bearings and hardware required for assembly. In addition, the kit is packed with electronic components, PCB and wire harnesses.

MicroSlice: Mini Laser Cutter & Engraver



The MicroSlice is a mini laser cutter and engraver.

The open source platform, powered by an Atmel-based Arduino Uno (ATmega328), is currently being promoted as a kit that takes approximately 15 hours to build.

uARM: Miniature Industrial Robot



This four-axis parallel-mechanism desktop robot arm is modeled after the ABB industrial PalletPack robot and is built around Atmel’s ATmega328 MCU which powers a custom board.

https://www.kickstarter.com/projects/ufactory/uarm-put-a-miniature-industrial-robot-arm-on-your?ref=live

The uARM platform is constructed with acrylic or wood parts and fitted with standard RC hobby servos.

Smart Nixie Tube



The Smart Nixie Tube is an open source platform powered by Atmel’s versatile ATmega328p.

https://www.kickstarter.com/projects/popshields/smart-nixie-tube?ref=live

Designed by Tyler Nehowing, the platform is fully programmable using the unmodified Arduino IDE, as it appears as an Arduino Uno running at 16MHz/5V.

OpenBCI: An Open Source Brain-Computer Interface For Makers

OpenBCI – designed by Joel Murphy & Conor Russomanno – is a low-cost programmable open-source EEG platform that offers Makers easy access to their brainwaves. In addition to an ADS1299 IC, the OpenBCI is equipped with Atmel’s ATmega328 (+ Arduino’s latest bootloader).

https://www.kickstarter.com/projects/openbci/openbci-an-open-source-brain-computer-interface-fo?ref=live

The project’s vision? 

”To realize the potential of the open-source movement to accelerate innovation in brain science through collaborative hardware and software development.”

White Bread Shield for Arduino

Mark Davidson recently designed an Atmel-powered (ATmega328) Arduino prototyping shield that can also be used as a stand-alone board for various DIY Maker projects.

https://www.kickstarter.com/projects/1214533021/white-bread-shield-for-arduino?ref=live

Dubbed the “White Bread Shield,” the platform is compatible with Arduino Uno boards.

Hauntbox



The Hauntbox is a prop controller and automation machine that is browser-configured and open source.

https://www.kickstarter.com/projects/1020117671/hauntbox

The ATmega2560-based platform allows Makers to easily automate inputs and outputs without the need for complex programming.

ControlLeo

ControLeo – designed by two retired Silicon Valley engineers – can probably best be described as a quad relay controller enclosed in a professional box.

https://www.kickstarter.com/projects/1471240030/controleo-an-arduino-compatible-controller?ref=live

The platform is driven by Atmel’s ATmega32u4 paired with an Arduino Leonardo boot loader.

FEZ Medusa



FEZ Medusa is an open source hardware (OSHW) processor board powered by Atmel’s ATmega328P.

https://www.kickstarter.com/projects/1359959821/an-arduino-compatible-electronic-building-block-sy?ref=search

Aptly described as “electronic building blocks” by the GHI Electronics crew, the Fez Medusa is designed to keep soldering irons optional with a comprehensive ecosystem of mainboards, sensors and control modules.

Rapid IoT prototyping with SODAQ

The Atmel-based SODAQ (ATmega328P) is a LEGO-like, plug-in, rapid prototyping board.

Simply put, the multi-feature microprocessor board allows both Makers and engineers to easily connect a wide variety of sensors and devices to the Internet.

Oscilloscope Watch

A Maker by the name of Gabriel Anzziani recently designed a rather impressive oscilloscope watch built around Atmel’s versatile ATxmega256A3U MCU.

https://www.kickstarter.com/projects/920064946/oscilloscope-watch

The device boasts all the trappings of a modern watch (time, calendar and alarm), along with all the features of the popular Xprotolab – oscilloscope, waveform generator, logic analyzer, protocol sniffer and frequency counter.

GPS Cookie

Developed by Richard Haberkern, the open source GPS Cookie is built around Atmel’s popular ATmega328P.

https://www.kickstarter.com/projects/richardhaberkern/gps-cookie-leaving-crumbs-wherever-it-goes

The Cookie’s compact form factor (available in two form factors, or shapes) makes it easy to carry, experiment with and expand.

Little Robot Friends



Little Robot Friends are both interactive and customizable, each with a unique and evolving personality.

https://www.kickstarter.com/projects/aesthetec/little-robot-friends?ref=home_spotlight

According to Mark Argo of Aesthetec Studio, the Little ‘bot family is built around Atmel’s ATmega328P MCU. Each Little Robot is powered by two rechargeable AAA batteries and depending on the frequency of use, should last for weeks or months on a single charge.

Lumapad



The Lumapad is an open source, high intensity, 8000 lumen LED lighting system built around Atmel’s ATmega328P MCU and an (optional) electric IMP.

https://www.kickstarter.com/projects/richardhaberkern/open-source-ultra-bright-led-light-pad-with-wifi-a

According to project designer Richard Haberkern, 32 ultra-bright LEDs are positioned in a landscape array to provide bright, even and controllable lighting, drawing only 88 watts. Last, but certainly not least, a built in electronic dimmer makes the light intensity adjustable to fit just about any environment.

Delta Six Game Controller



The Delta Six mirrors the look of a modern military combat rifle, including real time aiming as well as a kickback sensation. The Atmel-powered, Arduino-based Delta Six was developed using IR sensors, accelerometers and gyroscopes to provide unparalleled arcade experience.

https://www.kickstarter.com/projects/356540105/delta-six-a-new-kind-of-game-controller

The controller is compatible with Xbox 360, Play Station 3, and PC systems – and upgradeable for next-gen systems like Playstation 4.

Neko – A Color Field Oil Painter



Created by Laura Lippincott, Neko was brought to life with an Arduino Mega (Atmel ATmega1280), hobby parts and a 3D printer.

https://www.kickstarter.com/projects/painterbot/neko-a-color-field-oil-painter?ref=live

The ‘bot is currently being primed with color data in an attempt to make him more creative.

Smart Citizen Kit

Designed by Acrobotic, the Smart Citizen Kit is an open-source environmental monitoring platform powered by Atmel’s ATmega32U4.

https://www.kickstarter.com/projects/acrobotic/the-smart-citizen-kit-crowdsourced-environmental-m?ref=live

Dubbed the Ambient Board, the Kit hardware comprises two printed-circuit boards – an interchangeable daughterboard or shield, and an Arduino-compatible data-processing board. As the name suggests, it is equipped with sensors to measure air composition (CO and NO2), temperature, light intensity, sound levels and humidity.

Sparki – The Easy Robot for Everyone


Sparki is an easy to use Arduino-based robot (ATmega32u4RC) that offers a fun introduction to programming, electronics and robotics.

Although Sparki is simple enough for beginners, the ‘bot is packed with more than enough features to satisfy more experienced Makers.

Linkbot



Designed by Barobo, the Linkbot  is a modular robot platform powered by Atmel’s ATmega128RFA1 (running at 16MHz) that boasts 100oz-in (7.2 Kg-cm) of torque and a free-run speed of 300 deg/sec.

https://www.kickstarter.com/projects/barobo/linkbot-create-with-robots

Atmel’s ToT hits the road for EELive!

Atmel’s Mobile Training Center is heading to Las Vegas Nevada on March 26th and EE Live! in San Jose in early April.

We’ll be at the McEnery Convention Center on 150 W San Carlos on Tuesday, April 1 – Thursday, April 3, showcasing a wide variety of tech across a number of spaces 
including touchsecuritymicrocontrollers (MCUs), wirelesslighting and automotive.

More specifically, you can check out:

Atmel, along with Xively, will also be co-hosting an Internet of Things (IoT) Engineering Summit at EE Live! on Tuesday, April 1, 2014 @ 11:00 – 11:45 am. Participants are slated discuss the following IoT-related topics:

  • Embedded processing and security
  • Connectivity and interface
  • Software tools and development

You can register for Atmel’s ToT Las Vegas stop here and EE Live! here.

Interested in learning more about Atmel and the IoT? You can check out our article archive on the subject here as well as Atmel’s recent SoMa panel discussion on the IoT here.

Atmel’s Tech on Tour heads to SF



After successfully wrapping up SXSW 2014 in Austin, Atmel’s Tech on Tour (ToT) trailer is back on the road to the Bay Area – with a long-awaited San Francisco SoMa stop scheduled for March 18, 2014.

We’ll be at China Basin, Lot C @ 185 Berry Street (between 3rd and 4th) from 10AM-6PM, showcasing a wide variety of tech across a number of spaces including touchsecuritymicrocontrollers (MCUs), wirelesslighting and automotive.

More specifically, you can check out:

Atmel’s ToT will also be hosting an industry panel on the rapidly evolving Internet of Things (IoT) at 4:00PM.

Join industry experts from Atmel, ARM, Humavox and August for an interactive discussion on how the IoT, the hottest topic in the technology sphere, is impacting today’s market across multiple segments.

Interested? You can register for the event here. See you in SoMa!!!

Atmel is ready to rock @ SXSW!

Atmel’s Tech on Tour trailer is on the road again and heading to Austin, Texas for SXSW. We’ll be at the Hyatt Regency Austin from March 7-9, 2014, so be sure to stop by during the show to see our latest demos.

We’ll be showcasing a wide variety of tech across a number of spaces, including touch, security, microcontrollers (MCUs), wireless, lighting and automotive.

More specifically, you can check out:

In addition, we’re proud to host a guest appearance by Autodesk, the very same folks behind the world famous Instructables and 123D Circuits.

With 123D Circuits, you can breadboard and simulate your AVR-powered Arduino-based circuits, while writing, compiling and running code right in your browser. When you’re done, you can have the circuit board professionally made and shipped right to your doorstep.

Interested in learning more about Atmel’s tech on tour? You can check out our official ToT page here.