Tag Archives: IoT Nodes

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.

5 challenges of IoT connectivity

At last month’s MIT Technology Review Digital Summit, PubNub CEO Todd Greene discussed the importance of connecting Internet of Things embedded devices on a reliable and secure realtime network. CPU, battery, and bandwidth consumption, as well as security are all paramount considerations that need to be taken into account when connecting low-powered embedded devices.

You’ll find that when developing and networking Internet of Things devices in the lab, connectivity is fairly seamless. You may have a few embedded devices connected to a backend server, so latency isn’t an issue.

Internet of Things

However, deploying that IoT app on a global scale, to thousands or even millions of users simultaneously, is a whole other ball game. Unfortunately, the Internet isn’t just one big network, but rather is composed of an infinite amount of heterogeneous networks, including proxy servers, firewalls, cell towers, and WiFi networks, all slower and faster than one another.

As a result, there are 5 major challenges when it comes to Internet of Things connectivity. Keep scrolling down to see them, or watch the video below:

At PubNub, we think a lot about IoT connectivity and how we can make it as reliable, secure, and fast as possible. So to make PubNub the best network for connecting and signaling between Internet of Things devices, we first had to understand the challenges of doing so. Presenting the 5 challenges of IoT connectivity:

1. Signaling

When connecting IoT embedded devices, you need to start with bidirectional signaling to collect and route data between devices. Whether it’s embedded devices talking to a server to collect data, or devices signaling one another, you need to stream IoT signals and data quickly and reliably. You need to be 100% sure that that stream of data or signal is going to arrive at its destination every time.

2. Security

Security is a huge umbrella, but it’s paramount in Internet of Things connectivity and should be forethought, not an afterthought. For example, what good is a smart home if anyone can open your garage door? Here are three considerations for IoT security:

  • Authorization: When publishing or subscribing to stream of data or IoT signal, it’s essential to make sure that the IoT device or server has proper authorization to send or receive that stream of data.
  • Encryption: You need end-to-end encryption between devices and servers.
  • Open ports: An IoT device is dangerously vulnerable when it’s sitting and listening to an open port out to the Internet. You need birectional communication, but you don’t want to have open ports out to the Internet.

3. Presence Detection

Who’s there, (or in terms of IoT, what device is there)? It’s important to immediately know when an IoT device drops off the network and goes offline. And when that device comes back online, you need to know that as well.

Presence detection of IoT devices gives an exact, up to the second state of all devices on a network. This gives you the ability to monitor your IoT devices and fix any problems that may arise with your network.

4. Power consumption

IoT embedded devices are small and expensive, so CPU and power consumption need to be considered. When you have hundreds or even thousands of devices sending data and signaling one another, it takes a toll on power and CPU consumption. You need to maximize efficiency while minimizing power and CPU drain.

5. Bandwidth

In addition to power and CPU, bandwidth consumption is another challenge for IoT connectivity. Bandwidth on a cellular network is expensive, especially with hundreds of thousands of IoT devices on a network sending request/response signals to your server.

That’s a huge server issue and a requires a large scale server farm handling all this data. You need a lightweight network that can seamlessly transfer data between devices and servers.

Connecting IoT Devices with PubNub

Connecting devices in the lab is one thing, but once they’re out in the wild, it’s a whole new ballgame. So where do you start? Having a scalable IoT network to connect embedded devices and servers is especially critical for IoT applications with a large user base.

These are the types of Internet of Things challenges we’ve solved at PubNub. With over two hundred million connected devices connected to our global realtime network in fourteen data centers, we average 50 to 60 thousand transactions per second, peaking at over 3 million. PubNub is used to stream data and signal for hundreds of different IoT uses cases including:

  • Automotive: Connected cars need a realtime communication layer to stream data and signal between their fleet, dispatch, and the consumer on the app. Examples: Sidecar, Lyft, Easy Taxi, Gett, Zoomy
  • Home Automation: A realtime network can be used to signal and trigger actions for smart devices and home automation solutions. Examples: Insteon, Revolv, Vivint
  • Wearables: IoT wearables require a low latent, lightweight network to stream data between the device and a server. Battery, CPU, and bandwidth consumption are all important considerations that must be taken into account. Examples: 3rd Eye

By 2020, it’s estimated that there will be between 20 and 30 billion connected devices on the Earth. As a result, how we connect those devices should take precedence as the IoT field grows exponentially.