Tag Archives: ARM-Based Processor

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.

BBC to give out 1 million devices to kids as part of new initiative


BBC launches a UK-wide initiative to inspire the next generation of programmers and engineers.


It’s no secret that the Maker Movement has transcended well beyond the garages and workspaces of a few tinkerers. The phenomenon has proliferated the walls of schools, libraries, museums and retailers, among countless other establishments. Academic institutions and startups, particularly those seen on crowdfunding sites, have developed new projects in hopes of spurring the pursuit of STEM-related fields for the next generation. Maker Faire attendance is also on the rise as thousands of DIYers come together at one of 80 community events spanning across 10 countries. Looking to continue carrying that momentum, BBC has launched a new project — in partnership with over 50 organizations — which is looking to give a personal coding device to every child in year 7 across the country. That’s 1 million free devices in total to students, generally aged between 11 and 13, as part of the campaign they’re calling “Make it Digital.”

make_it_digital

Back in the 1980s, the BBC launched a Computer Literacy Project which aimed to support the learning of computing — at the time a relatively new concept for a vast majority — in schools and the home. This included a commercial partnership with Acorn Computers to produce a microcomputer as the backbone of the initiative: the BBC Micro. While nine models were eventually made with the BBC brand, the phrase “Micro” is usually used colloquially to refer to the first six (Model A, B, B+64, B+128, Master 128, and Master Compact). Well now, the news giant is reimagining its popular 1980s campaign by introducing its successor, the BBC Micro Bit.

Based on a processor which would appear to be an ATmega32U4, the Micro Bit will give students a physical companion in their path to coding competence. While merely a prototype at this point, it will be a standalone, palm-sized device equipped with an LED display and compatible with the Touch Develop, Python and C++ languages.

_81579433_microbit

Young Makers will then be able to create text via a series of lights as well as devise basic games. What’s nice is that the final version of Micro Bit will feature a Bluetooth link and will be able to sync up with other incredibly-popular boards like Arduino, Galileo, Kano and Raspberry Pi, in addition to other Micro Bits.

According to BBC, the Micro Bit will be distributed later this year, most likely the fall. The program was designed as a response to a shortage within the digital industry, given that nearly 1.4 million professionals will be needed over the next five years. BBC is hoping to aid in building the country’s talent pool and arming them with the requisite coding skills through a range of new partnerships and projects.

Interested in learning more? Head over to the project’s official page here.