Tag Archives: IEEE 802.11 b/g/n

The smart router is ready for IoT play


The evolution of router has reached the IoT’s doorsteps, and it raises some interesting prospects for industrial and smart home markets.


The router used to be largely a dumb device. Not anymore in the Internet of Things arena where node intelligence is imperative to make a play of the sheer amount of data acquired from sensors, machines and other ‘things.’ The IoT router marks a new era of network intelligence — but what makes a router smart?

owtbrd.png

For starters, it employs embedded hardware platforms with DIY capabilities while balancing the performance and power consumption requirements. Next, an IoT router provides the operational status on an LCD screen while manipulating the data from different interfaces. In human machine interface (HMI) applications, for example, a smart router offers LCD and touch screen interfaces on expansion I/Os.

Take the case of the DAB-OWRT-53 smart router, which is developed by the Belgian design house DAB-Embedded. The sub-100 euro device — based on Atmel’s SAMA5D36 processor and OpenWRT router hardware platform — is mainly targeted at smart home and industrial IoT applications.

The smart router of DAB-Embedded

The IoT router supports popular wireless interfaces such as Wi-Fi, ZigBee and Z-Wave, as well as a diverse number of wired interfaces including Ethernet, USB, CAN 2.0A/B, KNX and RS-232. And all the data from these interfaces can be stored in either microSD card or NAND flash.

Anatomy of Smart Router

The Atmel | SMART SAMA5D36 is at the heart of the smart router design. First and foremost, it optimizes power consumption in the battery-operated router that features 3.7V lithium polymer battery support with charging capability over a microUSB connector. The router boasts eight hours of battery lifetime while being in full ON mode with Wi-Fi communications.

Second, the ARM Cortex-A5 processor shows a robust performance in the communications domain. For instance, the SAMA5D36 implements routing functionality to transfer data from one Ethernet port to another in a way that router designers don’t require an external hardware hub or switch. Moreover, Atmel’s MPU offers greater flexibility to run a lot of embedded software packages such as OpenZWave and LinuxMCE.

Third, the SAMA5D36-based IoT router offers users the ability to manipulate firewall settings, Disable PING, Telnet, SSH and UPnP features. Furthermore, the hardware security block in SAMA5D3 processor allows the use of CryptoDev Linux drivers to speed up the OpenSSL implementation. The Wi-Fi module — powered by Atmel’s WILC3000 single-chip solution — also supports the IEEE 802.11 WEP, WPA and WPA2 security mechanisms.

The smart router of DAB-Embedded employs Active-Semi’s ACT8945AQJ305-T power management IC, but the real surprise is Altera’s MAX 10 FPGA with an integrated analog-to-digital converter (ADC). That brings the additional flexibility for the main CPU: Atmel’s SAMA5D36.

The FPGA is connected to the 16-bit external bus interface (EBI) so that IoT developers can put any IP core in FPGA for communication with external sensors. All data is converted inside the FPGA to a specific format by using NIOS II’s soft CPU in FPGA. Next, the SAMA5D36 processor reads this data by employing DMA channel over the high-speed mezzanine card (HSMC) bus.

An FPGA has enough cells to start even two soft cores for data preprocessing. Case in point: A weather station with 8-channel external ADC managing light sensors, temperature sensors, pressure sensors and more. It’s connected to the FPGA together with PPS signal from GPS for correct time synchronization of each measurement.

Router.png

OpenWRT Framework

The SAMA5D36 embedded processor enables DAB’s smart router design to customize free OpenWRT Linux firmware according to the specific IoT application needs. The OpenWRT framework facilitates an easy way to set up router-like devices equipped with communications interfaces such as dual-port Ethernet and Wi-Fi connection.

What’s more, by using the OpenWRT framework, an IoT developer can add now his or her own application (C/C++) to exchange data with a KNX or Z-Wave transceiver. OpenWRT even supports the Lua embedded interpreter.

Next, while DAB-Embedded has built its smart router using the embedded Linux with OpenWRT framework, Belgium’s design house also offers a board support package (BSP) based on the Windows Embedded Compact 2013 software. That’s for IoT developers who have invested in Windows applications and want to use them on the new hardware: the DAB-OWRT-53 smart router.

Later, the embedded design firm plans to release smart router hardware based on the Windows 10 IoT software and Atmel’s SAMA5D family of embedded processors. The Belgian developer of IoT products has vowed to release the second version of its router board based on Atmel’s SAMA5D4 embedded processor and WILC3000 chipset that comes integrated with power amplifier, LNA, switch and power management. Atmel’s WILC3000 single-chip solution boasts IEEE 802.11 b/g/n RF/baseband/MAC link controller and Bluetooth 4.0 connection.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.

mbed eval boards showcase focus on IoT software and connectivity


Chipmakers like Atmel are joining hands with ARM to bring the entire ecosystem under one roof and thus facilitate the creation of standards-based IoT products.


ARM’s mbed operating system is winning attention in the highly fragmented embedded software space by promising a solid software foundation for interoperable hardware and thus scale the Internet of Things designs by narrowing the development time.

Atmel has put its weight behind ARM’s mbed OS by launching the single-chip evaluation board for the IoT ecosystem in a bid to ensure low software dependence for the embedded developers. The leading microcontroller supplier unveiled the mbed evaluation platform at the recent ARM TechCon held in Santa Clara, California.

The mbed OS platform is focused on rapid development of connected devices with an aim to create a serious professional platform to prototype IoT applications. So IoT developers don’t have to look to software guys for help. The mbed stack features a strong focus on enhancing the IoT’s connectivity and software components.

Atmel mbed Xpro board

ARM is the lead maintainer for the mbed OS modules while it adds silicon partners, like Atmel, as platform-specific dependencies for the relevant mbed OS modules. Silicon partners are responsible for their platform-specific drivers.

Atmel’s mbed-enabled evaluation board is based on the low-power 2.4GHz wireless Cortex-M0+ SAM R21 MCU. Moreover, Atmel is expanding mbed OS support for its Wi-Fi modules and Bluetooth Low Energy products.

The fact that Atmel is adding mbed OS to its IoT ecosystem is an important nod for ARM’s mbed technology in its journey from merely a hardware abstraction layer to a full-fledged IoT platform. Atmel managers acknowledge that mbed technology adds diversity to embedded hardware devices and makes MCUs more capable.

Solid Software Foundation

There is a lot of code involved in the IoT applications and software is getting more complex. It encompasses, for instance, sensor library to acquire data, authentication at IoT gateways and SSL security. Here, the automatic software integration engine like mbed lets developers focus on their applications instead of worrying about integrating off-the-shelf software.

The mbed reference designs like the one showcased by Atmel during ARM TechCon are aimed at narrowing the development time with the availability of building blocks and design resources—components, code and infrastructure—needed to bootstrap a working IoT system. Atmel managers are confident that a quality software foundation like mbed could help bring IoT products to market faster.

thingsquare2

Atmel’s mbed-enabled IoT evaluation board promises harmony between hardware and software. Apparently, chipmakers like Atmel are joining hands with ARM to bring the entire ecosystem — OS software, cloud services and developer tools — under one roof, and thus facilitate the creation of standards-based IoT products. Atmel’s mbed evaluation board clearly mirrors that effort to deliver a complete hardware, software and developer tools ecosystem in order to bring IoT designs quicker to market.

The platform comprises of mbed OS software for IoT client devices like gateways and mbed Device Server for the cloud services. ARM launched the mbed software platform in 2014 and Atmel has been part of this initiative since then.

mbed in Communications Stack

Additionally, Atmel has tied the mbed association to its SmartConnect wireless solutions to make the best of mbed’s networking stack in the Internet of connected things. The IoT technology is built on layers, and here, interoperability of communications protocols is a key challenge.

For a start, Atmel’s SAM R21-Xpro evaluation board is embed-enabled and is built around the R21 microcontroller, which has been designed for industrial and consumer wireless applications running proprietary communication stacks or IEEE 802.15.4-compliant solutions.

Next up, the evaluation board includes SAM W25 Wi-Fi module that integrates IEEE 802.11 b/g/n IoT network controller with the existing MCU solution, SAM D21, which is also based on the Cortex-M0+ processor core.

XPLAIN
Furthermore, Atmel is offering an mbed-enabled Bluetooth starter kit that includes SAM L21 microcontroller-based evaluation board and ultra-low-power Bluetooth chip BTLC1000, which is compliant with Bluetooth Low Energy 4.1. Atmel demonstrated a home lighting system at the ARM TechCon show floor, which employed SAM R21-based Thread routers that passed light sensor information to an mbed-enabled home gateway. Subsequently, this information was processed and sent to the mbed Device Server using a web interface.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Finger on the IoT Pulse: ‘Presence’ Functionality

We talk a lot about connecting, networking, and securing the Internet of Things, and the billions of devices spread across the globe. Another essential piece of the IoT puzzle is monitoring those devices, specifically with what we call presence. 

Presence functionality gives IoT developers a way to monitor individual or groups of IoT devices in realtime. Whenever the state of the device changes, the change is reflected in realtime to a dashboard, with an alert, or any other way you want to display your tracking.

Internet-Of-Things-Presence

What Can Presence Monitor?

As soon as you start streaming large volumes of data, or signaling and trigger actions to devices, you need to know what devices are connected. So what kinds of device states can you monitor with presence functionality? Pretty much anything you want! With Presence functionality, you can build out custom device states including:

  • Online/offline status
  • Device health
  • Capacity for fleet management
  • Total device count in field
  • Battery/location status
  • Machine status (eg. currently working on X task, driver driving/offline)
  • Temperature and weather data from IoT sensors

With presence data, you can also log a history of device connectivity for audits and analytics. It’s not just about having realtime insight into your devices, but also tracking and logging performance, health, and other key metrics.

Why Is It Important?

Devices may get expensive: IoT devices can be expensive, so keeping tabs on your investment is essential. Device health presence monitoring gives you up to the millisecond health reports for device temperature, connectivity, battery life, etc, ensuring you that your device is 100% operational, all the time. And if any issues arise, you’ll know immediately that maintenance is required.

Devices may be imperative to operations/business: If IoT devices are at the core of business and operations, monitoring their health and status is paramount. Whether it’s agriculture readings, security sensors, or delivery fleet management, up to the millisecond device status can make or break a business.

Device Analytics: Accurate and up to date statistics and analytics is important to any IoT application or business. Presence functionality can store, retrieve, and playback collected analytics, for example, to give a history of device connectivity or health for audits.

Machine-to-Machine and IoT Use Cases for Presence

As we know, connected devices come in all shapes and sizes. And as IoT devices get smarter, more connected, more secure, and faster, they’re use in the field is skyrocketing across the globe. And as we add more devices into the field, realtime presence functionality is just as important as our device networks and IoT security.

Agriculture: As with other connected technologies, the Internet of Things has found heavy adoption in the agricultural industry. Sensors and monitoring devices for temperature, irrigation, weather patterns, and harvest management give farmers a realtime, accurate data stream, giving them full control over their agriculture system. As a result, keeping tabs on their vast system of IoT devices with presence functionality is key.

Figure-1_Rosphere-537x300

Connected Car/Shipping & Freight: Smart cars are shifting IoT boundaries and constitutes a disruptive and transformative environment. Connected car represents a large number of IoT use cases for automobiles including taxi, fleet management, shipping and freight, and delivery service. Connected cars require a secure and reliable connection to counter the various roadblocks that arise in the wild, such as constantly changing cell and network towers and dropped connections.

For taxi, shipping, freight, and delivery management, custom presence functionality is a vital component of the business, providing realtime custom vehicle and device states, such as vehicle and cargo capacity, location data, and device health.

2a818e001e8179cd0a0888b8dba99809

Home Automation: We’re well aware that our homes are getting smart. It seems today, every appliance has an IP address. It’s safe to say that the smart home market is prepared to take the world by storm. Especially for applications that enable users to control their homes remotely, presence functionality is essential. In the smart home, presence gives users a realtime view of their devices status (lights on, doors locked, water leak, thermostat, fridge temperature, etc). And that’s the basis of a solid home automation solution.

Internet-of-Things

Presence on the PubNub Data Stream Network

PubNub Channel Presence is one of the core features of the PubNub Data Stream Network. It enables developers to add user and device detection to their web, mobile, and IoT applications, giving realtime instant detection and notification of user/device status. Built on the global PubNub Data Stream Network, no matter where the devices are located, you can get an accurate and reliable reading on any custom device state you want.

For a quick tutorial on using Presence for IoT devices, whether it’s a network of 1000 connected devices or a single Arduino, check out our blog post: Realtime IoT Monitoring for Devices with PubNub Presence.

Atmel expands SmartConnect portfolio with 802.11b/g/n Wi-Fi SoCs and modules

Atmel has expanded its leading SmartConnect wireless portfolio with four new turnkey system-on-chips (SoCs): the WILC1000 and WINC1500. Each SoC extends the company’s already broad portfolio of wireless connectivity options with the latest 802.11b/g/n Wi-Fi capability, seamlessly integrating Newport Media’s (NMI) solutions in just two months.

Atmel_WINC1500_FB_TC_1200x1200_091714

If you recall, NMI was acquired back in July 2014, thereby enabling Atmel to offer designers and Makers the industry’s most comprehensive wireless portfolio of smart, connected devices for the growing Internet of Things (IoT). The acquisition immediately added 802.11n Wi-Fi and Bluetooth to its existing offerings and has accelerated the company’s introduction of low-energy Bluetooth products, Atmel CEO Steve Laub recently explained. “Combined with our existing Wi-Fi and ZigBee solutions and industry leading microcontroller portfolio, Atmel is positioned for substantial growth in the Internet of Things marketplace.”

Both wireless solutions are compatible with existing Atmel microcontroller solutions and can connect to all Atmel AVR or Atmel | SMART MCUs. The new WINC1500 is an IEEE 802.11b/g/n IoT network controller, while the WILC1000 is an IEEE 802.11b/g/n IoT link controller.

Expanding on Atmel’s Wi-Fi offering, the WILC1000 and WINC1500 are SoC solutions optimized for battery-powered IoT applications. These wireless SoCs feature fully-integrated power amplifiers for the industry’s best communication range, without compromising cost or performance. Both the WILC1000 and WINC1500 are add-on solutions which can connect to any Atmel MCU or eMPU targeting a wide range of Internet of Things (IoT), consumer and industrial applications. Both products are available either as fully-certified modules ready for production to accelerate a designer’s time-to-market or as discrete SoCs for customers requiring the highest design flexibility.

“Atmel is excited to offer one of the broadest portfolios of differentiated wireless MCU solutions in the industry to further enable more smart, connected devices in the era of the Internet of Things,” said Kaivan Karimi, Atmel Vice President of Wireless Solutions. “Connected devices that were once a concept are becoming a reality because of innovations that are allowing devices to be smaller, easier to use, faster and more powerful—but are lower in power and optimized for battery operations. When these products are paired with Atmel’s broad portfolio of products, along with comprehensive technologies, OEMs and small developers are allowed to streamline the production of the next wave of IoT devices.”

Atmel’s SmartConnect family can be connected to any ultra-low power MCUs or eMPUs and wireless connectivity solutions into an easy, turnkey IoT solution. SmartConnect enables Wi-Fi Internet connectivity using ultra-low power for IoT edge/sensing nodes markets, therefore reducing overall bill of materials. In addition, the latest solutions accelerate development time for cost-effective, battery-operated applications in the residential, healthcare, industrial, smart energy and wearable markets.

As Reza Kazerounian, Senior Vice President and General Manager, MCU Business Unit at Atmel, previously noted, ultra-low power wireless connectivity is critical for embedded applications in the era of IoT.  “[That is why] Atmel’s SmartConnect technology is about simplifying the use of embedded wireless connectivity technologies and enabling users to accelerate their time-to-market. This simplicity allows all players to participate in the IoT market, fueling the innovation needed to accelerate adoption.”

The WILC1000 and WINC1500 provide multiple peripheral interfaces such as UART, SPI, SDIO and I2C. The only external clock source needed is a high-speed crystal or oscillator with a wide variety of reference clock frequencies supported (between 12 – 50 MHz) and are IEEE 802.11 b/g/n, RF, Baseband, MAC certified.

Key features of the Atmel WILC1000, which can be found on its preliminary datasheet ready for download, include:

  • IEEE 802.11 b/g/n RF/PH/MAC SoC
  • IEEE 802.11 b/g/n (1×1) for up to 72Mbps
  • Single spatial stream in 2.5Ghz RF band
  • Integrated PA and T/R Switch
  • Superior Sensitivity and Range via advanced PHY signal processing
  • Advanced Equalization and Channel Estimation
  • Advanced Carrier and Timing Synchronization
  • Wi-Fi Direct and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA, WPA2 Security
  • Supports China WAPI security
  • Superior MAC throughput via hardware accelerated two-level A-MSDU/A-MPDU frame aggregation and block acknowledgement
  • On-chip memory management engine to reduce host load
  • SPI and SDIO host interfaces
  • 2/3/4-wire Bluetooth coexistence interface

WILC

Key features of the Atmel WINC1500, whose preliminary datasheet can also be found here, include:

  • IEEE 802.11 b/g/n RF/PH/MAC SOC
  • IEEE 802.11 b/g/n (1×1) for up to 72Mbps
  • Single spatial stream in 2.5Ghz RF band
  • Integrated PA and T/R Switch
  • Superior Sensitivity and Range via advanced PHY signal processing  Wi-Fi Direct and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA, WPA2 Security
  • On-chip memory management engine to reduce host load
  • 4Mbit internal Flash memory for system software
  • SPI, UART and I2C as host interfaces
  • Power save modes
    • 3μA deep sleep mode
    • 600μA standby mode (state is preserved)
    • On-chip low power sleep oscillator
    • Fast host wake-up by chip pin or clock-less transaction
  • Fast boot options
    • On-Chip Boot ROM (Firmware instant boot)
    • SPI flash boot (firmware patches and state variables)
    • Low-leakage on-chip memory for state variables (next chip revision)
    • No SPI flash is needed if firmware patches and state variables can be loaded from MCU at boot time
    • Fast AP Re-Association (150ms)
  • On-Chip Network Stack to offload MCU
    • Integrated Network IP stack to minimize host CPU requirements
    • Network features TCP, UDP, DHCP, ARP, HTTP, SSL, and DNS
  • TCP/IP protocol stack (client/server) sockets applications
  • Wi-Fi security WEP, WPA, WPA2 and WPS
  • Advanced Equalization and Channel Estimation
  • Advanced Carrier and Timing Synchronization
  • Wi-Fi Direct and Soft-AP support
  • Network protocols (DHCP/DNS)
  • WSC (wireless simple configuration WPS)
  • No OS small footprint host driver (4KB flash – less than 1KB RAM)

WINC

Interested in the newest members of the SmartConnect family? The WILC1000 and WINC1500 are both now available — WILC1000 as a chip and three different modules; the WINC1500 as a chip and a module, with an evaluation kit featuring Atmel’s SAM D21 MCU.