Tag Archives: IoT Network Controller

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.

mbed eval boards showcase focus on IoT software and connectivity


Chipmakers like Atmel are joining hands with ARM to bring the entire ecosystem under one roof and thus facilitate the creation of standards-based IoT products.


ARM’s mbed operating system is winning attention in the highly fragmented embedded software space by promising a solid software foundation for interoperable hardware and thus scale the Internet of Things designs by narrowing the development time.

Atmel has put its weight behind ARM’s mbed OS by launching the single-chip evaluation board for the IoT ecosystem in a bid to ensure low software dependence for the embedded developers. The leading microcontroller supplier unveiled the mbed evaluation platform at the recent ARM TechCon held in Santa Clara, California.

The mbed OS platform is focused on rapid development of connected devices with an aim to create a serious professional platform to prototype IoT applications. So IoT developers don’t have to look to software guys for help. The mbed stack features a strong focus on enhancing the IoT’s connectivity and software components.

Atmel mbed Xpro board

ARM is the lead maintainer for the mbed OS modules while it adds silicon partners, like Atmel, as platform-specific dependencies for the relevant mbed OS modules. Silicon partners are responsible for their platform-specific drivers.

Atmel’s mbed-enabled evaluation board is based on the low-power 2.4GHz wireless Cortex-M0+ SAM R21 MCU. Moreover, Atmel is expanding mbed OS support for its Wi-Fi modules and Bluetooth Low Energy products.

The fact that Atmel is adding mbed OS to its IoT ecosystem is an important nod for ARM’s mbed technology in its journey from merely a hardware abstraction layer to a full-fledged IoT platform. Atmel managers acknowledge that mbed technology adds diversity to embedded hardware devices and makes MCUs more capable.

Solid Software Foundation

There is a lot of code involved in the IoT applications and software is getting more complex. It encompasses, for instance, sensor library to acquire data, authentication at IoT gateways and SSL security. Here, the automatic software integration engine like mbed lets developers focus on their applications instead of worrying about integrating off-the-shelf software.

The mbed reference designs like the one showcased by Atmel during ARM TechCon are aimed at narrowing the development time with the availability of building blocks and design resources—components, code and infrastructure—needed to bootstrap a working IoT system. Atmel managers are confident that a quality software foundation like mbed could help bring IoT products to market faster.

thingsquare2

Atmel’s mbed-enabled IoT evaluation board promises harmony between hardware and software. Apparently, chipmakers like Atmel are joining hands with ARM to bring the entire ecosystem — OS software, cloud services and developer tools — under one roof, and thus facilitate the creation of standards-based IoT products. Atmel’s mbed evaluation board clearly mirrors that effort to deliver a complete hardware, software and developer tools ecosystem in order to bring IoT designs quicker to market.

The platform comprises of mbed OS software for IoT client devices like gateways and mbed Device Server for the cloud services. ARM launched the mbed software platform in 2014 and Atmel has been part of this initiative since then.

mbed in Communications Stack

Additionally, Atmel has tied the mbed association to its SmartConnect wireless solutions to make the best of mbed’s networking stack in the Internet of connected things. The IoT technology is built on layers, and here, interoperability of communications protocols is a key challenge.

For a start, Atmel’s SAM R21-Xpro evaluation board is embed-enabled and is built around the R21 microcontroller, which has been designed for industrial and consumer wireless applications running proprietary communication stacks or IEEE 802.15.4-compliant solutions.

Next up, the evaluation board includes SAM W25 Wi-Fi module that integrates IEEE 802.11 b/g/n IoT network controller with the existing MCU solution, SAM D21, which is also based on the Cortex-M0+ processor core.

XPLAIN
Furthermore, Atmel is offering an mbed-enabled Bluetooth starter kit that includes SAM L21 microcontroller-based evaluation board and ultra-low-power Bluetooth chip BTLC1000, which is compliant with Bluetooth Low Energy 4.1. Atmel demonstrated a home lighting system at the ARM TechCon show floor, which employed SAM R21-based Thread routers that passed light sensor information to an mbed-enabled home gateway. Subsequently, this information was processed and sent to the mbed Device Server using a web interface.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.