Tag Archives: transceiver chip

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.

Creating an RF RSSI Sniffer Tool for Car Access Systems

By Chris Wunderlich and George Rueter

By reconfiguring the Atmel ATA5830N UHF transceiver chip through a simple method using its Flash program capability, you can create a received signal strength indicator (RSSI) monitoring tool that you can use both in a lab setting as well as in a vehicle.

The ATA5830N chip integrates a high-performance UHF transceiver with a low-power Atmel AVR 8-bit microcontroller. The device also has 6KB of Flash memory—this Flash memory space is what you can use to develop an application for an RSSI monitor that generates USART-formatted messages with RSSI data.  

To create the RSSI monitoring tool, we developed the software using the ATAK51002-V1 evaluation kit, a +5V power supply and the RF signal input. The kit includes a reference design that consumes about 9mA when running our application—low enough to support battery operation. Once we powered up the reference design, we awakened the ATA5830N device by momentarily connecting any of the “npwron” pins to ground or the “pwron” pin to +5V. Once the part was awake and active, we didn’t need to provide additional input and the RSSI data was available at PC3 pin 17.

Using the EEPROM configuration file, we programmed desired radio parameters into the part. You can select these values using an Excel spreadsheet tool that automatically generates the EEPROM file. Once we programmed the values into the EEPROM, the application of power automatically initiated the self-configuration and execution of the Flash application program.

You can use the resulting application for several common RF engineering tasks, including RF environment analysis, performance tuning of the receiver section, RF component selection and antenna performance evaluation. For diagrams and the full details about creating the RSSI tool, read our full article, “RF RSSI Sniffer Tool for Car Access Systems.”