Tag Archives: transportation

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.

Atmel’s Tech on Tour mobile trailer hits the road



Atmel’s Tech on Tour (ToT) crew has tirelessly crisscrossed the globe for many years, offering hands-on technical training for a wide range of company products. This month, Atmel kicked off a new ToT era with a tricked-out mobile trailer that will be hitting the road this month.

The versatile mobile training center allows visitors to interact with a plethora of next-gen Atmel tech, including AVR and ARM based microcontrollers, automotive and crypto solutions, microprocessors, Internet Of Things (IoT) products, wearable devices, 3D printers, touch sensors and XSense.

In addition to hands-on training, Atmel will leverage the fact that it is at the heart of the Maker Movement and well positioned at the center of IoT innovation. From my perspective, the IoT will be led by a rising generation of tinkerers, inventors and innovators. These are dedicated people who are working out of universities, garages and small companies. We will go and meet them.

IMG_1202

Our mobile Tech on Tour trailer provides a familiar setting for customers, engineers and Makers, as well as designers, students, professor and executives. We want to meet people in the market working on projects like electronics, robotics, transportation, alternative energy and sustainable agriculture. That is why we are offering hands-on training and access to soldering irons, along with a chance to brainstorm about the future together.

IMG_1345

To be sure, the ToT trailer is quite a scalable platform, functioning not only as a mobile training center, a showroom and conference center, but also as a trade show booth, entertainment center, content creation platform, executive meeting center, recruitment platform, tech support center and employee engagement engine.

TruckInsideFronta_111513_IMG_8912.small

On top of that, we are partnering with all global distribution partners, customers, third parties, Makers, government officials and universities to bring Atmel to the market. We are very excited about the concept and the pull from the market and distribution partners has been very promising.

Note: You can request a ToT stop at your location here.

Random Challenge / Response Authentication in Plain English

By: Gunter Fuchs

Working deep down in the guts (bits and bytes) of a computer, it becomes hard to explain concepts, once the electronic world has taken them over. I wondered about a simple way to explain authentication without referring to the world of computers, so that someone who isn’t savvy with technology can readily understand it.  Well, there is an authentication scenario in one’s modern day-to-day affairs that does not involve any computer (except if you consider the human brain to be one). This scenario is plain and simple: putting a signature on a piece of paper.

How can we describe a signing process in system security terms for authentication? Specifically, what has putting one’s signature on a contract or bill to do with “challenge / response authentication”? The analogy is quite simple. The challenge is the request by – say – the cashier to sign the bill. The response is your signature. That way, you prove that you are the person who owns the credit card. The cashier authenticates your signature by comparing it with the one on your credit card. In computer security terms, that means that the host (cashier) compares a stored response (your signature on the credit card) with the actual response (your signature on the bill). If the host (cashier) comes to the conclusion that both signatures are equal, it accepts the generator of the response as being authentic.

This scenario is quite insecure because someone can easily forge a signature. The reason in cryptographic terms is because this system can generate only one challenge / response pair. An adversary knows what the challenge will be, and if she has seen / copied the response (signature) only once, she can, after some practice, reproduce it relatively fast and easily. A way to improve the security in such a system is to increase the number of possible challenge / response pairs. An example in the online world is a list of question / answer pairs. Sometimes when you log in, a question pops up asking the name of your favorite pet, teacher, or band. Only you and the online host know the correct answer. Such a list increases the security of a system, but since this list is usually short, finding out the few answers by eaves-dropping is not a huge obstacle for an adversary. The advantage of such a short list of challenge / response pairs is that a human brain can manage it. But in a system where only computers play with each other, we can introduce much bigger lists. They are nowadays pairs  as big as 2^32. In such a system, with a huge number of challenge / response pairs, the host chooses one randomly. An adversary would now have to replicate this huge table, and once it has done that, search through this table for the challenge to find the correct response. Well, you could argue, why not? And how can an authentic client find the correct response in a feasible time? This issue is solved by introducing a cryptographic algorithm and a key into the system. By using a key and an algorithm, tables of challenge / response pairs don’t have to be generated and stored, but a host only has to generate a random number to “choose” a challenge. When the client receives this random number as a challenge, it combines it with a key using a cryptographic algorithm and sends the result back to the host (response). (The cryptographic algorithm “hides” the key so that an adversary cannot extract it from the response.) The host now performs the same calculation using the same key and compares the received response with its calculated one. If the two match—voila!—the host finds the client to be authentic.

With a system that incorporates the process of random challenge / response authentication, an adversary would have to monitor many, many (depending on the biggest number – “number space” – used in this system) authentication sequences between host and client and store them in a table. And after that, it would have to find the challenge in this table to come up with the correct response if it wants to pretend to be the authentic client. Finding it would practically take eternities, “would be infeasible” in cryptographic terms. The quality of the randomness of the random number is important, because the better the quality of the random number generator the less an adversary can predict the next challenge. If an adversary could predict the next challenge, he could search his table in advance.

random challenge response, cryptographic algorithm

random challenge response, cryptographic algorithm