Tag Archives: smart energy

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.

Digital photo frame doubles as an energy monitor


While it might look like an ordinary digital picture frame, it’s so much more.


A digital photo frame that shares memorable moments of your life and saves you money on your electric bill each month? Picture that! That is the premise behind CEIVA Energy’s HomeView digital picture frame, which allows users to keep tabs on home energy use, without the need for another display showing boring information about kilowatt hours.

ceiva-homeview-580x420

Founded in 2000 by former Disney executives, the Burbank, California company officially launched in 2011. Since its inception, the infiltration of smart devices throughout the home has led to an assortment of sophisticated thermostats, like the Google Nest and Honeywell Lyric, that can learn a homeowner’s energy consumption habits and automatically adjust the temperature accordingly to mitigate costs and unnecessary use.

While the idea of merging a digital photo display with energy data may seem a bit absurd, the team behind the frame believes it has developed a new, more intuitive alternative to increase customer engagement. And, as the smart home market continues to emerge, some consumers may find connected devices to either be too pricey or unnecessary, or the average consumer may just not be interested in another form of technology. What’s great about CEIVA HomeView is that it simply brings an accessory already found throughout your home into the digital-savvy era.

How it works is pretty simple. The frame displays a montage of photos uploaded by its owner on its 8-inch screen. Meanwhile, the ZigBee-enabled device wirelessly receives energy use data from the home’s smart meter. Once the information has been sent to and processed by CEIVA’s servers, the frame then displays home energy consumption approximately every 90 seconds. The data points are reduced to two or three numbers, not an entire chart or graphical representation that shares a bunch of confusing information. Instead, the gadget reveals useful things like electric rate and an estimated utility bill for that month.

nobg_apps

While receiving information about current and historical electricity, water and gas usage is a welcomed addition into any home, users can also invite friends and family to send photos directly to the frame, send pictures to a frame remotely via the web, email, camera phone, tablet and social media channels, as well as insert a memory card and view a camera’s photos in real-time.

One of, if not the, most important feature of the HomeView is its security — an imperative element as the number of smart home hacks are on the rise. Equipped with an Atmel ATECC108 crypto engine, CEIVA notes that the frame never be replicated and all communications to and from frame are uniquely assigned for that specific. In other words, only you can view information and control your devices. This is because the ATECC108 provides a full turnkey Elliptic Curve Digital Signature Algorithm (ECDSA) engine using key sizes of 256 or 283 bits, which are appropriate for modern security environments without the long computation delay typical of software solutions.

Want a HomeView frame for your home? Head on over to company’s official page here. In the meantime, watch as CEIVA’s Jack McKee and Jack Brooks provide a hands-on overview of their latest smart device below.

Atmel launches G3-PLC-compliant power-line carrier solutions

During European Utility Week 2014, Atmel will be debuting a pair of new power-line communication solutions compliant with the G3-PLC specification.

B1lah7sIgAAk_o3

The new Atmel G3-PLC products include the SAM4CP16C system-on-chip (SoC) and ATPL250A modem that are pin-compatible with PRIME-compliant members of the Atmel | SMART portfolio of energy metering solutions already in production. The SoC option is similar to the rest of the SAM4Cx products built around a dual-core 32-bit ARM Cortex-M4 architecture with advanced security, metrology and wireless and power-line communications (PLC) options. This unique and highly flexible platform addresses OEM’s requirements for flexible system partitioning, lower bill of materials (BOM) and improved time-to-market.

“Utilities worldwide require OEMs to meet very high reliability standards at aggressive cost points for smart meters which embed advanced feature sets in connectivity, security and flexibility,” explained Colin Barnden Semicast Research Principal Analyst. “Additionally, smart meters to be deployed in several countries are required to be certified for compliance with the latest specifications including G3-PLC, PRIME and IEEE 802.15.4g. Atmel’s smart metering solutions now meet the required criteria for emerging standards based smart metering deployments from a reliability, performance, interoperability and cost perspective.”

These new products address the European (CENELEC), American (FCC) and Japanese (ARIB) profiles defined by the G3-PLC Alliance. Atmel is an active participant in the G3-PLC Alliance certification program and expects full CENELEC certification in November followed by FCC and ARIB band certifications in the coming months.

A distinguishing feature of the ATPL250A and SAM4CP16C is an integrated Class-D line driver, which provides outstanding signal injection efficiency and improved thermal characteristics compared to competing technologies. This will help eliminate reliability issues encountered in the field as a result of thermal overheating. Additionally, common architecture, software environment and tools ensure that our customers’ R&D investments can be shared and re-utilized over multiple projects which address various connectivity standards.

SAM4CP16C_LQFP176_angle2

Key features of the SoC include:

  • Application 
    • ARM Cortex-M4 running at up to 120 MHz,
    • Memory protection unit (MPU)
    • DSP Instruction
    • Thumb-2 instruction set
    • Instruction and data cache controller with 2 Kbytes cache memory
  • Co-processor
    • ARM Cortex-M4F running at up to 120 MHz
    • IEEE 754 compliant, single precision floating-point unit (FPU)
    • DSP Instruction
    • Thumb-2 instruction set
    • Instruction and data cache controller with 2 Kbytes cache memory
  • Symmetrical/Asynchronous dual core architecture
    • Interrupt-based interprocessor communication
    • Asynchronous clocking
    • One interrupt controller (NVIC) for each core
    • Each peripheral IRQ routed to each NVIC input
  • Cryptography
    • High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
    • TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
    • Classical public key crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
    • Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA assisted
  • Safety
    •  4 physical anti-tamper detection I/O with time stamping and immediate clear of general backup registers
    • Security bit for device protection from JTAG accesses
  • G3 PLC embedded modem
    • Power-line carrier modem for 50 Hz and 60 Hz mains
    • Implements G3-PLC CENELEC, FCC and ARIB profiles
    • G3-PLC coherent and differential modulation schemes available
    • Automatic Gain Control and continuous amplitude tracking in signal reception
    • Class D switching power amplifier control
  • Shared system controller
    • Power supply
    • Embedded core and LCD voltage regulator for single supply operation
    • Power-on-reset (POR), brownout detector (BOD) and watchdog for safe operation
    • Low-power sleep and backup modes

APTL250A_LQFP80_angle2

While notable components of the ATPL250A include:

  • G3-PLC modem
    • Implements G3 CENELEC-A, FCC and ARIB profiles (ITU-T G.9903, June ´14)
    • Power-line carrier modem for 50 Hz and 60 Hz mains
    • G3-PLC coherent and differential modulation schemes available
  • Automatic gain control and continuous amplitude tracking in signal reception
  • 1 SPI peripheral (slave) to external MCU
  • Zero cross detection
  • Embedded PLC analog front end (AFE), requires only external discrete high efficient Class D line driver for signal injection
  • Pin to pin compatible to ATPL30A, Atmel modem for PRIME PLC

The first batch of samples and evaluation kits will be available this month, mass production is slated for January 2015. In the meantime, those wishing to learn more about Atmel’s PLC solutions can head here.

Atmel launches new family of wireless transceivers for smart energy applications

With European Utility Week 2014 in full swing, Atmel has unveiled a new family of wireless transceivers including the AT86RF215, AT86RF215M, and AT86RF215IQ. Expanding upon the Atmel | SMART metering portfolio, the new solutions address the industry’s low-cost, multi-protocol connectivity requirements for smart metering, smart lighting, home energy gateways and other industrial and automation equipment.

B1lah7sIgAAk_o3

The first sampling device, AT86RF215, is the industry’s first dual-band sub-1GHz / 2.4GHz transceiver compliant to IEEE 802.15.4g-2012 and ETSI TS 102 887-1. Additionally, AT86RF215M is asingle band sub-1GHz transceiver, while the AT86RF215IQ is a dual-band I/Q radio. All three deliver an output power of up to 14dBm. With receiver sensitivities down to -123dBm, an outstanding link budget of 137dB can be achieved.

The AT86RF215 offers superior flexibility by supporting a variety of data rates with three modulation schemes: multi-rate and multi-regional frequency shift keying (MR-FSK), orthogonal frequency division multiplexing (MR-OFDM), as well as offset quadrature phase-shift keying (MR-O-QPSK). This entails the physical layer used for ZigBee PRO and ZigBee IP. Simultaneous operation at sub-1GHz and 2.4GHz enables new capabilities and the right cost structure in smart metering, smart lighting, home energy gateways and other industrial and automation equipment.

AT86RF215_Block_Diagram_lg_929x516_101614

Some of the family’s key features include:

  • Fully integrated radio transceiver covering 389.5-510 MHz, 779-1020 MHz, and 2400-2483.5 MHz
    • European bands at 863-870 MHz, 870-876 MHz, and 915-921 MHz
    • Chinese bands at 470-510 MHz and 779-787 MHz
    • North American band at 902-928 MHz
    • Korean band at 917-923.5 MHz
    • Japanese band at 920-928 MHz
    • Worldwide ISM band at 2400-2483.5 MHz
  • Supported PHYs (IEEE 802.15.4g-2012, IEEE 802.15.4- 2011, and proprietary modes)
    • MR-FSK: 50…400 kbit/s with optional forward error correction and interleaving
    • MR-OFDM: 50…2400 kbit/s
    • MR-O-QPSK: 6.25…1000 kbit/s, 100…2000 kchip/s
    • O-QPSK: 250…1000 kbit/s, 1000 and 2000 kchip/s
  • Simultaneous operation at sub-1 GHz and 2.4 GHz
  • Bi-directional differential RF signal ports, one for sub-1 GHz and one for 2.4 GHz
  • SPI interface to access registers and frame buffers
    • LVDS interface to access 13-bit I/Q data
    • IEEE 802.15.4 MAC support • Frame filter
    • FCS handling
    • Automatic acknowledgement
    • CCA with automatic transmit
  • Industry-leading link budget
    • Programmable TX output power up to +14 dBm
    • Receiver sensitivity down to -123 dBm
  • Low power supply voltage from 1.8V to 3.6V
  • Low current consumption
    • 30 nA in SLEEP mode
    • 28 mA in RX mode
    • 65 mA in TX mode @ 14 dBm output power
  • Industrial temperature range from -40°C to +85°C
  • 48-pin low-profile lead-free plastic QFN package

“We are excited to see the widespread adoption of standards-based connectivity solutions for the utility industry worldwide,” said Kourosh Boutorabi, Atmel Senior Director of Smart Energy Products. “Expanding our portfolio of smart metering solutions to include new wireless transceivers reinforces our commitment to serve this growing market. We are continuing to deliver new platform solutions for the smart energy market, including powerline carrier connectivity and industry’s most comprehensive portfolio of metering system-on-chip solutions.”

atmel_SMART_Microsite_980x352

While initial samples and evaluation kits for the AT86RF215 are available now to lead customers, mass sampling is planned for Q1 2015 and volume production for Q3 2015.

Gartner’s 2014 Hype Cycle maps the journey to digital business

The journey to digital business is the key theme of this year’s Gartner Hype Cycle. As the Gartner Hype Cycle celebrates its 20th anniversary, the research firm highlighted that as enterprises set out on the journey to becoming digital businesses, identifying and employing the right technologies at the right time will be critical. In their latest report, Gartner crowned the Internet of Things and Natural-Language Question Answering as the two most hyped technologies with both expected to reach their respective “plateaus of productivity” (when they are will become mainstream).

Gartner’s 2014 Hype Cycle special report provides strategists and planners with an assessment of the maturity, business benefit and future direction of more than 2,000 technologies, grouped into 119 areas. Among the new Hype Cycles this year include Digital Workplace, Connected Homes, Enterprise Mobile Security, 3D Printing and Smart Machines.

HC_ET_2014-1.jpg;pv4cc7877f7de80268

“The central theme for this year’s Emerging Technologies Hype Cycle is Digital Business. As enterprises embark on the journey to becoming digital businesses, they will leverage technologies that today are considered to be ’emerging,'” explained Hung LeHong, Vice President and Gartner fellow. “Understanding where your enterprise is on this journey and where you need to go will not only determine the amount of change expected for your enterprise, but also map out which combination of technologies support your progression.”

According to industry analysts at Gartner, the IoT is forecasted to reach 26 billion installed units by 2020, up from 0.9 billion just five years ago, and will impact the information available to supply chain leaders and how the supply chain operates, depending on industry. Gartner anticipates a 30-fold increase in connected physical devices by 2020, which will continue to create a network rich with information that enables supply chains to assemble and communicate in new ways.

However, the analysts have pointed to a lack of standardization in the area, as well as the changing nature of the technology itself, as a factor in why widespread adoption of IoT may take longer than anticipated. “Standardization (data standards, wireless protocols, technologies) is still a challenge to more-rapid adoption of the IoT,” Gartner’s Hung LeHong writes.

Highlighted on the Gartner road map to digital business, there are six progressive business era models that enterprises can identify with today and to which they can aspire in the future:

  • Stage 1: Analog
  • Stage 2: Web
  • Stage 3: E-Business
  • Stage 4: Digital Marketing: The Digital Marketing stage sees the emergence of the Nexus of Forces (mobile, social, cloud and information). Enterprises in this stage focus on new and more sophisticated ways to reach consumers, who are more willing to participate in marketing efforts to gain greater social connection, or product and service value. Buyers of products and services have more brand influence than previously, and they see their mobile devices and social networks as preferred gateways. Enterprises at this stage grapple with tapping into buyer influence to grow their business. Technologies included in the Digital Marketing stage range from software-defined anything and big data to virtual reality and gesture control.
  • Stage 5: Digital Business: Digital Business is the first post-nexus stage on the road map and focuses on the convergence of people, business and things. The Internet of Things and the concept of blurring the physical and virtual worlds are strong concepts in this stage. Physical assets become digitalized and become equal actors in the business value chain alongside already-digital entities, such as systems and apps. 3D printing takes the digitalization of physical items further and provides opportunities for disruptive change in the supply chain and manufacturing. The ability to digitalize attributes of people (such as the health vital signs) is also part of this stage. Even currency (which is often thought of as digital already) can be transformed (for example, cryptocurrencies). Digital Business technologies range from enterprise 3D printing and bioprinting systems to wearable user interfaces and connected homes.
  • Stage 6: Autonomous: Autonomous represents the final post-nexus stage. This stage is defined by an enterprise’s ability to leverage technologies that provide humanlike or human-replacing capabilities. Using autonomous vehicles to move people or products or using cognitive systems to write texts or answer customer questions are all examples that mark the Autonomous stage. Technologies that fall within the Autonomous category include virtual personal assistants and smart robots to biochips and autonomous vehicles.

“Although we have categorized each of the technologies on the Hype Cycle into one of the digital business stages, enterprises should not limit themselves to these technology groupings,” LeHong said. “Many early adopters have embraced quite advanced technologies, such as autonomous vehicles or smart advisors, while they continue to improve nexus-related areas, such as mobile apps – so it’s important to look at the bigger picture.”

atmel_SMART_Microsite_980x352

From home automation and smart metering to wearables and other IoT applications, a new generation of embedded products will increasingly power our lifestyle, as depicted by the Hype Cycle. Atmel is making it easier for designers to create a more intelligent, more connected world through its recently-unveiled Atmel® | SMART™ brand of ARM-based microcontrollers and expanded SMART portfolio. These solutions include embedded processing and connectivity — as well as software and tools — designed to make it faster and more cost-effective to bring smart products to market. Atmel | SMART MCUs combine powerful 32-bit ARM cores with industry-leading low-power technology and intelligent peripherals.

To explore the latest emerging technologies, you can access Gartner’s entire “Hype Cycle for Emerging Technologies 2014” report here.

Atmel introduces next-gen SoC solution for smart metering

Atmel recently announced the introduction of its latest Power Line Communication System-on-Chip (SoC) solution designed for smart metering applications.

SmartEnergy_Update_Category_728x280_080514

The Atmel SAM4CP16B is an extension of Atmel’s SAM4Cx smart energy platform built on a dual-core 32-bit ARM® Cortex®-M4 architecture. Fully compatible with Atmel’s ATPL230A OFDM physical layer (PHY) device compliant with PRIME standard specification, this highly flexible solution addresses OEM’s requirements for various system partitioning, BOM reduction and time-to-market requirements by incorporating independent application, protocol stack and physical layer processing functions within the same device.

Atmel-smart

“We continue to build on the success of our industry leading SAM4Cx platform and offer best-in-class embedded connectivity, flexibility and cost structure for high-volume smart metering deployments,” said Andres Munoz, Atmel Marketing Manager, Smart Energy Communications. “Furthermore, additional enhancements developed to meet PRIME standard specifications provide unprecedented performance in rigorous environments.”

atmel_SMART_HomePage_980x352

As part of the Atmel® | SMART™ family, the solution includes integrated low-power driver, advanced cryptography, 1Mbytes of embedded Flash, 152Kbytes of SRAM, low-power RTC, and LCD controller. Additional key features include:

  • Application/Master Core
    — ARM Cortex-M4 running at up to 120 MHz
    — Memory Protection Unit (MPU)
    — DSP Instruction
    — Thumb®-2 instruction set
    — Instruction and Data Cache Controller with 2 Kbytes Cache Memory
  • Co-processor
    — ARM Cortex-M4F running at up to 120 MHz
    — IEEE® 754 Compliant, Single precision Floating-Point Unit (FPU)
    — DSP Instruction
    — Thumb-2 instruction set
    — Instruction and Data Cache Controller with 2 Kbytes Cache Memory
  • Symmetrical/Asynchronous Dual Core Architecture
    — Interrupt-based Interprocessor Communication
    — Asynchronous Clocking
    — One Interrupt Controller (NVIC) for each core
    — Each Peripheral IRQ routed to each NVIC Input
  • Cryptography
    — High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
    — TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
    — Classical Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
    — Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA assisted
  • Safety
    — 4 Physical Anti-tamper Detection I/O with Time Stamping and Immediate Clear of General Backup Registers
    — Security bit for Device Protection from JTAG accesses
  • PRIME PLC embedded modem
    — Power Line Carrier Modem for 50 Hz and 60 Hz mains
    — 97-carriers OFDM PRIME compliant
    — DBPSK, DQPSK, D8PSK modulation schemes available
    — Additional enhanced modes available: DBPSK Robust, DQPSK Robust
    — Eight selectable channels between 42kHz to 472kHz available
    — Baud rate Selectable: 5.4 to 128.6 kbps
    — Four dedicated buffers for transmission/reception
    — Up to 124.6 dBμVrms injected signal against PRIME load
    — Up to 79.6 dB of dynamic range in PRIME networks
    — Automatic Gain Control and continuous amplitude tracking in signal reception
    — Class D switching power amplifier control
  • Shared System Controller
    — Power Supply
    — Embedded Core and LCD Voltage Regulator for single supply operation
    — Power-on-Reset (POR), Brownout Detector (BOD) and Watchdog for safe operation
    —Low Power Sleep and Backup modes

Interested in learning more about Atmel’s new comprehensive smart energy platform? You can check out our recent deep dive on the subject here.

The Internet of Things and energy conservation

Humans are creative, and adaptive. We’ve done it all our lives, and all our existence. We needed more food, and so we created agriculture. We needed to live together, and so we created architecture. We needed to communicate, and so we created hundreds of ways to do just that; Internet, mobile telephone networks, computers. We are so fond of computers that we have them everywhere, often without noticing them. Yes, you might have a bulky desktop computer at home, or maybe even a flashy new laptop, but those are not the only computers. Your mobile telephone is a computer, but technically, so is your microwave, your car, your television set, and even your washing machine.

Our lives have changed greatly. We’ve all seen pictures and even films of medieval castles, and we know how we used to live. Today, our lives are made more comfortable by scores of machines; when was the last time you washed your clothes by hand? The clothes go in the washing machine, then in the dryer, and then in the cupboard. This all comes at a cost; financially, of course, but also in terms of energy.

Energy. The art of creating electrical power and delivering it to our homes and cities. For most people, this is as simple as having overhead power lines here and there, and paying a bill at the end of the month. Unfortunately, it is much more complicated than that. Power stations require scores of people to operate, and something surprising, data. In France, we have “too many” power stations, and most run at low capacity. When it gets hot, those who have air conditioning like to put it on, consuming electricity. Multiply that by a few thousand, and you get an idea of how much energy the power station needs to produce. When it gets cold, people like to heat their homes and businesses, and since everyone has radiators, electrical consumption soars. Imagine the amount of radiators an entire city can contain, and imagine even 50% of them turned on at the same time. Imagine.

Data is needed from other sources, not just from the weather. Imagine the amount of power required to let all the football fans watch the world cup. Our problem is that we can generate electricity, but we cannot store it (at least, not on this kind of scale). When everything gets turned on, the power station must be able to respond. If it can’t, bad things happen; the lights dim, or sometimes everything goes dark. We now know we cannot live without electricity.

SMART Energy Flow

We all know that we need to reduce our energy dependence, even if some of us don’t want to. To make more people aware, some cities turn off all the lights for an hour. It’s called Earth Hour. For one hour, people are encouraged to use as little electricity as possible; turning off the lights, for example. This does have an impact, but it is a double-edged sword. For one hour, the electricity usage drops considerably, while everyone thinks about the planet, and what we will leave behind for our children. At the end of the hour, everything goes back on, and this is where things get tricky. When electrical devices are first turned on, some can generate what is called an energy spike; a large consumption at first, before something more stable. It is visible just after Earth Hour, but it actually happens every day.

Building Appliances and Home Systems using Energy at Optimum Times

Peak hours. In my house, my electric water heater is connected to a peak-hour detection system. At 11:30 PM, my electricity provider starts “off-peak” hours, a time where electricity costs less. It costs less, an incentive to make me use power-hungry devices at a time when other devices are not needed. At this time of night, most businesses are closed, and so there is less demand. It is all about normalizing energy requirements, and to stop peaks during the day. At 7:30 AM, peak hours start, the water heater turns off, businesses start up, and my kettle turns on, the day is about to begin.

Ikea-kitchen_IoT-SMART-HOME-Connected

Energy is available, that isn’t the problem. Our problem is our use of energy. If only we had a way of using energy when it was available. Imagine, a certain amount of energy available. When I need light, I want my light to be usable immediately. I need a start time; now. However, when I put my clothes in the washing machine generally, I need them to be ready for the next day. I need and “end” time; I need the device to get the work done before a certain time. When will the washing machine start? Well, I don’t actually mind when it starts, and this is where I need help. This is where the IoT can help us, because we really need help.

The IoT will give us millions of connected sensors. This will also supply us with data, lots and lots of it. Why wouldn’t a small device in my house have direct control over my washing machine, or even better, actually be inside my washing machine? It could be programmed to start at a specific time, talking to other devices on the energy grid? Or even in my home; it could tell the water heater to wait until it has finished, and then the water heater gets its chance. The possibilities are endless.

Washing Machine is Connected - SMART HOME

IoT will give us an incredible amount of data, and data that can be used to help up control, and maybe even overcome our need to energy. But wait a minute, doesn’t the IoT itself need energy? It does, but the amount of energy that it will save outweighs the amount of energy it uses, and by a large factor. Take, for example, Atmel’s SAM D21 microcontroller. It uses less than 70µA per MHz, and that is when it is running at full speed. Of course, these devices have advanced power management, and with careful coding, they can last for months on cell batteries. Low power does not mean no power; it has enough flex to get the job done, and more. With built-in USB, ADCs, DACs and enough RAM and ROM for the most complex programs, it gets the job done. It also has the Atmel Event system, a powerful system that lets the microcontroller react to external events without the need to constantly look at inputs.

(Source CES 2014 - Samsung's Vision of the Now and Future of Connected Appliances)

We need a little help in our lives to make simple decisions; when should I turn the heating on? When is the best time to turn on the air conditioner? We think we know, but we don’t. IoT will allow us to know exactly when the cold weather is coming. IoT will know when to turn the lights off. In short, IoT will generate enough data that it will know better than us what to do, and when. What we have seen so far is only the beginning.