Tag Archives: ultra low-power designs

The power of the platform in IoT and wearable designs


What IoT developers want? A candid look at the wearable designs shows how platform approach is helping design engineers confront daunting challenges in the IoT arena.


“Providers become platforms” is the second most prominent finding of the Forbes story entitled “The Five Most Disruptive Innovations at CES 2016.” Interestingly, all the five disrupting forces outlined in the story relate to the Internet of Things blaze one way or the other. A coincidence? Not really.

CES 2016 was mostly about demonstrating how the advent of a connected world is possible with the creation of an array of smart and interconnected devices. However, the IoT juggernaut, while exploring the true value of connectivity, also requires new business models, which in turn, makes time-to-market even more critical.

Smart badge brings efficiency in enterprise, hospitality and healthcare

Take smart wearable devices, for instance, which were arguably the biggest story on the CES floor this year. A wearable design comprises of one or more sensors, connectivity solution like a radio controller, a processor to carry out system-level functions, storage to log information, display and battery. And what IoT and wearable developers want?

A platform that allows them to facilitate the finished products quickly and efficiently. The design engineers simply can’t afford experimentation with the basic blocks as they need a precedence of basic hardware and software functions working efficiently and smoothly.

Anatomy of Wearable Design

First and foremost, wearable designs confront power constraints even greater than mobile devices. Not surprisingly, ultra-low-power MCUs lie at the heart of wearable designs because they combine flash, on-chip RAM and multiple interface options while intelligently turning power on and off during activity and idle periods, respectively.

The next design conundrum relates to the form factor because these devices are being worn, so they have to be small and light. That, in turn, demands even smaller circuit boards with a greater level of integration. Enter the IoT platforms.

Amid power, performance and form factor considerations, the choice of a right IoT platform means that designers will most likely get the basic building blocks right. And that will allow IoT developers to focus on the application, differentiation and customer needs.

That’s what Atmel is aiming for with the launch of a reference platform for cost-optimized IoT and wearable applications. Atmel’s ultra-low-power platform, which was announced over the week of CES, is aimed at battery-operated wearable devices requiring activity and environment monitoring.

Power has a critical role in the key IoT building blocks

IoT Developer Platform

Below are the key highlights of Atmel’s platform offering for the IoT and wearable designs.

Processor: Microcontroller’s low-power requirements make it a likely choice in wearable designs; MCUs that communicate and process sensor inputs draw very little power from the battery while asleep. Remember the L21 microcontroller that made headlines back in 2015 after leading the low-power benchmarks conducted by EEMBC ULPBench.

Atmel’s SMART SAM L21 MCU — based on ARM’s lowest power Cortex-M0+ processing core — scored 185 in the benchmark and was able to bring the power consumption down to 35µA/MHz in active mode and 200nA in sleep mode.

Communications: The BTLC1000 is an ultra-low power Bluetooth Smart (BLE 4.1) system-on-chip (SoC) that comes integrated with ARM Cortex-M0 core, transceiver, modem, MAC, power amplifier, TR switch, and power management unit (PMU). It can be used as a BLE link controller or data pump with external host MCU or as a standalone applications processor with embedded BLE connectivity and external memory.

Atmel claims that its BTLC1000 Bluetooth solution — a 2.2mm x 2.1mm wafer level chip scale package — is 25 percent smaller than the nearest competitor solution. And Electronic Products magazine has corroborated that premise by calling it the lowest power BLE chipset that consumes less than 4mA in RX and less than 3mA in TX at 0dbm.

Security: Atmel is among the first chipmakers to offer specialized security hardware for the IoT market. Its microcontrollers come integrated with anti-cloning, authentication and encryption features.

Display: Wearable devices often show data such as time, measurements, maps and notifications on a display, and here, capacitive touch provides a very intuitive form of interfacing with the information. Atmel’s MCUs can directly manage capacitive buttons through software libraries that the firm provides.

Furthermore, Atmel offers standalone display controllers that support capacitive button, slider and wheel (BSW) implementations. These touch solutions can be tuned to moisture environments, a key requirement for many wearable applications. Atmel’s maXTouch capacitive touchscreen controller technology is a leading interface solution for its low-power consumption, precision and sensitivity.

Sensors: The development framework for the wearable designs features BHI160 6-axis SmartHub motion sensor and BME280 environment sensor from Bosch. It’s worth noting that Bosch is one of Atmel’s sensor partners. However, wearable product designers are free to pick sensors of their choice from Atmel’s other sensor partners.

Software support: The software package includes RTOS, Atmel’s Studio 7 IDE and Atmel START, which Atmel claims is the world’s first intuitive web-based tool for software configuration and code generation. Moreover, Atmel Software Framework (ASF) offers communication libraries for Bluetooth radios.

Atmel's developer platform for IoT and wearable designs

The truth is that the design game has moved from hardware and software functional blocks to complete developer ecosystems since the iPhone days. Now the ecosystem play is taking platforms to a whole new level in the design diversity that comes with the IoT products.

The choice of a right IoT platform means that designers will most likely get the basic building blocks right, and then, they can focus on the application and customer needs. It also provides design engineers space for differentiation, a critical factor in making wearable devices a consumer success.

 

 

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.