Tag Archives: Wi-Fi Module

Adafruit’s new breakout board will connect your Arduino to the Internet


This 802.11bgn-capable module is the best new thing for networking your devices, with SSL support and rock solid performance.


Makers wishing to connect their Arduino Zero (or Uno) to the Internet can now do so with Adafruit’s new ATWINC1500 Wi-Fi Breakout Board.

2999-00

The ATWINC1500 found at its core is the ideal add-on to existing MCU solutions bringing wireless and network capabilities through UART or SPI-to-Wi-Fi interface. The Wi-Fi module features a fully-integrated power amplifier, LNA, switch and power management, as well as internal Flash memory.

“This 802.11bgn-capable WiFi module is the best new thing for networking your devices, with SSL support and rock solid performance — running our Adafruit.io MQTT demo for a full weekend straight with no hiccups (it would have run longer but we had to go to work, so we unplugged it),” Adafruit explains. “We like these so much, they’ve completely replaced the CC3000 module on all our projects.”

2999-03

The Adafruit ATWINC1500 Wi-Fi Breakout uses SPI to communicate, and supports a range of security protocols including WEP, WPA and WPA2, TLS and SSL encryption.

“Right now the Atmel-supplied library works great with Arduino Zero, and seems to work OK on Uno but may not work on other Arduinos. You can clock it as fast as 12MHz for speedy, reliable packet streaming. And scanning/connecting to networks is very fast, a few seconds,” Adafruit adds.

2999-02

Since this is the Adafruit crew’s new favorite SPI-protocol Wi-Fi module, and rightfully so, they’ve gone ahead and created a little breakout for it. This 1.3″ x 1.1″ x 0.16” board comes with level shifting on all the input pins so you can use it with 3V or 5V logic, a 3.3V voltage regulator, and a trio of LEDs that can be controlled either over the SPI interface (part of the library code) or by the Arduino library. They’ll light up when hooked up to an SSID, or transmitting data.

Interested? Head over to Adafruit’s official page to get your $24.95 board today!

Why connect to the cloud with the Atmel | SMART SAM W25?


The “thing” of IoT does not have to necessarily be tiny. 


The Atmel | SMART SAM W25 is, in fact, a module — a “SmartConnect Module.” As far as I am concerned, I like SmartConnect designation and I think it could be used to describe any IoT edge device. The device is “smart” as it includes a processing unit, which in this case is an ARM Cortex-M0-based SAMD21G, and “connect” reminds the Internet part of the IoT definition. Meanwhile, the ATWINC1500 SoC supports Wi-Fi 802.11 b/g/n allowing seamless connection to the cloud.

What should we expect from an IoT edge device? It should be characterized by both low cost and power! This IoT system is probably implemented multiple times, either in a factory (industrial) or in a house (home automation), and the cost should be as low as possible to enable large dissemination. I don’t know the SAMD21G ASP, but I notice that it’s based on the smallest MCU core of the ARM Cortex-M family, so the cost should be minimal (my guess). Atmel claims the W25 module to be “fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”… sounds like ultra low-power, doesn’t it?

Atmel claims the W25 module to be “Fully-integrated single-source MCU + IEEE 802.11 b/g/n Wi-Fi solution providing battery powered endpoints lasting years”…sounds like being ultra low-power, isn’t it

The “thing” of IoT does not necessarily have to be tiny. We can see in the above example that interconnected things within the industrial world can be as large as these wind turbines (courtesy of GE). To maximize efficiency in power generation and distribution, the company has connected these edge devices to the cloud where the software analytics allow wind farm operators to optimize the performance of the turbines, based on environmental conditions. According with GE, “Raising the turbines’ efficiency can increase the wind farm’s annual energy output by up to 5%, which translates in a 20% increase in profitability.” Wind turbines are good for the planet as they allow avoiding burning fossil energy. IoT devices implementation allows wind farm operators to increase their profitability and to build sustainable business. In the end, thanks to Industrial Internet of Thing (IIoT), we all benefit from less air pollution and more affordable power!

ATSAMW25 Block-DiagramThe ATWINC1500 is a low-power Systems-on-Chip (SoC) that brings Wi-Fi connectivity to any embedded design. In the example above, this SoC is part of a certified module, the ATSAMW25, for embedded designers seeking to integrate Wi-Fi into their system. If we look at the key features list:

  • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
  • Integrated PA and T/R switch
  • Superior sensitivity and range via advanced PHY signal processing
  • Wi-Fi Direct, station mode and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA
  • On-chip memory management engine to reduce host load
  • 4MB internal Flash memory with OTA firmware upgrade
  • SPI, UART and I2C as host interfaces
  • TCP/IP protocol stack (client/server) sockets applications
  • Network protocols (DHCP/DNS), including secure TLS stack
  • WSC (wireless simple configuration WPS)
  • Can operate completely host-less in most applications

We can notice that host interfaces allow direct connection to device I/Os and sensors through SPI, UART, I2C and ADC interfaces and can also operate completely host-less. A costly device is then removed from the BOM which can enable economic feasibility for an IoT, or IIoT edge device.

The low-power Wi-Fi certified module is currently employed in industrial systems supporting applications, such as transportation, aviation, healthcare, energy or lighting, as well as in IoT areas like home appliances and consumer electronics. For all these use cases, certification is a must-have feature, but low-cost and ultra-low power are the economic and technical enablers.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on November 15, 2015.

Wino is an $11 Arduino-like board with Wi-Fi


Wino is like an Arduino in a much smaller form factor with built-in Wi-Fi.


Recently launched on Kickstarter, the Wino is an Arduino-compatible board with built-in Wi-Fi that is designed to help bring IoT ideas to life in a cost-effective manner — $11 to be exact.

photo-original

Boasting a much smaller form factor and lower price tag than other Arduinos on the market today, the Wino is built around the Atmel | SMART SAM D21 — the same chip at the heart of the Zero. This gives users more speed, space and several new features, all while consuming minimal power. The unit runs at an operating voltage of 3.3V, includes 15 digital I/O and seven analog I/O pins (six 12-bit ADC, one 10-bit DAC), 16KB of RAM and 128KB of Flash memory. Meanwhile, its on-board Wi-Fi module comes with a simple web-based setup that makes the device accessible from just about anywhere.

The layout combines an uber small size (26.6mm x 18.6mm) with a 27-pin stackable header, enabling Makers to easily upgrade the Wino with functions like relay and power measurement, battery supply, temperature monitoring, DC and servo motor control, motion sensing, as well as USB which allows a user to program their board by opening a web browser and selecting a Wi-Fi network. Once connected, a Maker can communicate with the module from any TCP/IP device, whether that’s a smartphone, tablet, laptop or desktop PC.

Upgrade

Those Makers just starting out will appreciate that Wino comes with pre-installed, open source software, thereby eliminating any prerequisite programming skills. What’s more, the board supports the highly-popular Arduino IDE, giving users the ability to upload existing Arduino codes or employ one of the countless libraries available.

“Since over a year the design of the board was constantly improved and optimized. The goal was to create a hardware which combines als necessary features which makes it a perfect basis for connected devices. And this a a very small size,” its team writes.”The main task was provide the board at a minimum price which makes it easy to use the board even in low cost applications (like wireless switches). We are very confident that we found a good solution that combines functionality, small size, performance and costs.”

Board

Interested in devising a home automation, multimedia or fitness IoT project? You may want to head over to Wino’s official Kickstarter page, where German startup IAN is currently seeking $28,019. Delivery is slated for November 2015.

Introducing the SmartConnect SAM W25 module for edge nodes IoT applications

Now on display at Electronica 2014, the SmartConnect SAM W25 module is the industry’s first fully-integrated FCC-certified Wi-Fi module with a standalone MCU and hardware security from a single source. The module includes Atmel’s recently-announced 2.4GHz IEEE 802.11 b/g/n Wi-Fi WINC1500, along with an Atmel | SMART SAM D21 ARM Cortex M0+-based MCU and Atmel’s ATECC108A optimized CryptoAuthentication engine with ultra-secure hardware-based key storage for secure connectivity.

IMG_5275

With nearly 5 billion connected devices expected next year with another 25 billion predicted by 2020, designers are now demanding more flexible, cost-optimized modules that provide a complete end-point solution from a single vendor. The fully-integrated SAM W25 delivers a secure ‘plug and play’ solution integrating wireless technologies with the design flexibility required for these IoT developers.

The billions of devices in edge nodes IoT applications will be powered by an embedded processing unit such as an MCU, and connected through a secure wireless signal. As more embedded developers start designing IoT apps for smart, secure connected devices, the need for solutions that integrate an MCU, hardware security and pre-certified wireless connectivity solution into one box will become a critical piece of the IoT puzzle; thereby, designers will no longer need wireless or encryption expertise to create an IoT gadget or gizmo.

Atmel’s FCC-, Telec-, IC- and CE-certified SAM W25 is a standalone solution that gives designers an all-in-one platform with a low-power MCU, hardware security and FCC-certified wireless connectivity from a single source. The small packaged module is cost optimized to lower the overall bill of materials for battery-operated applications ranging from remotes to home automation devices and beyond.

“IoT will impact nearly everyone’s lives ranging from their garage to their lighting systems, door locks, thermostats, fitness monitors, medical devices and more,” said Kaivan Karimi, Atmel Vice President and GM of Wireless MCUs. “Every one of these IoT devices will require an integrated edge node solution that delivers an MCU and secure wireless connectivity. Atmel’s SAM W25 delivers just that—a fully integrated secure wireless MCU module with over-the-air upgrade functionality that simplifies the complexities of wireless and security, and gives our customers time-to-market advantage. Atmel is committed to making it easier for IoT designers to bring their latest products to market with fully integrated modules that are ‘out-of-the-box’ ready to use, so developers can focus on developing features that will enhance the consumer experience.”

atmel_winc1500_fb_tc_1200x1200_091714

Key features of the Atmel SmartConnect SAM W25 include

• Turnkey system with integrated software that includes TLS 1.0 and a TCP/IP stack WPA2 personal and enterprise security
• FCC-certified 2.4GHz IEEE 802.11 b/g/n Wi-Fi WINC1500
• Atmel | SMART ARM Cortex M0+-based SAM D21; 256KB Flash; 32KB SRAM
• Serial Peripheral Interface (SPI)
• Over-the-air updates
• ATECC108A CryptoAuthentication engine with ultra-secure hardware-based key storage for secure connectivity

Though the Atmel SAM W25 module won’t be available until December 2014, Electronica attendees can now get a firsthand sneak peek at the ‘plug and play’ solution. To help accelerate design development, Atmel offers a SAM W25 integrated module on an Xplained starter kit platform which will be available next month as well.