Tag Archives: WILC3000

The smart router is ready for IoT play


The evolution of router has reached the IoT’s doorsteps, and it raises some interesting prospects for industrial and smart home markets.


The router used to be largely a dumb device. Not anymore in the Internet of Things arena where node intelligence is imperative to make a play of the sheer amount of data acquired from sensors, machines and other ‘things.’ The IoT router marks a new era of network intelligence — but what makes a router smart?

owtbrd.png

For starters, it employs embedded hardware platforms with DIY capabilities while balancing the performance and power consumption requirements. Next, an IoT router provides the operational status on an LCD screen while manipulating the data from different interfaces. In human machine interface (HMI) applications, for example, a smart router offers LCD and touch screen interfaces on expansion I/Os.

Take the case of the DAB-OWRT-53 smart router, which is developed by the Belgian design house DAB-Embedded. The sub-100 euro device — based on Atmel’s SAMA5D36 processor and OpenWRT router hardware platform — is mainly targeted at smart home and industrial IoT applications.

The smart router of DAB-Embedded

The IoT router supports popular wireless interfaces such as Wi-Fi, ZigBee and Z-Wave, as well as a diverse number of wired interfaces including Ethernet, USB, CAN 2.0A/B, KNX and RS-232. And all the data from these interfaces can be stored in either microSD card or NAND flash.

Anatomy of Smart Router

The Atmel | SMART SAMA5D36 is at the heart of the smart router design. First and foremost, it optimizes power consumption in the battery-operated router that features 3.7V lithium polymer battery support with charging capability over a microUSB connector. The router boasts eight hours of battery lifetime while being in full ON mode with Wi-Fi communications.

Second, the ARM Cortex-A5 processor shows a robust performance in the communications domain. For instance, the SAMA5D36 implements routing functionality to transfer data from one Ethernet port to another in a way that router designers don’t require an external hardware hub or switch. Moreover, Atmel’s MPU offers greater flexibility to run a lot of embedded software packages such as OpenZWave and LinuxMCE.

Third, the SAMA5D36-based IoT router offers users the ability to manipulate firewall settings, Disable PING, Telnet, SSH and UPnP features. Furthermore, the hardware security block in SAMA5D3 processor allows the use of CryptoDev Linux drivers to speed up the OpenSSL implementation. The Wi-Fi module — powered by Atmel’s WILC3000 single-chip solution — also supports the IEEE 802.11 WEP, WPA and WPA2 security mechanisms.

The smart router of DAB-Embedded employs Active-Semi’s ACT8945AQJ305-T power management IC, but the real surprise is Altera’s MAX 10 FPGA with an integrated analog-to-digital converter (ADC). That brings the additional flexibility for the main CPU: Atmel’s SAMA5D36.

The FPGA is connected to the 16-bit external bus interface (EBI) so that IoT developers can put any IP core in FPGA for communication with external sensors. All data is converted inside the FPGA to a specific format by using NIOS II’s soft CPU in FPGA. Next, the SAMA5D36 processor reads this data by employing DMA channel over the high-speed mezzanine card (HSMC) bus.

An FPGA has enough cells to start even two soft cores for data preprocessing. Case in point: A weather station with 8-channel external ADC managing light sensors, temperature sensors, pressure sensors and more. It’s connected to the FPGA together with PPS signal from GPS for correct time synchronization of each measurement.

Router.png

OpenWRT Framework

The SAMA5D36 embedded processor enables DAB’s smart router design to customize free OpenWRT Linux firmware according to the specific IoT application needs. The OpenWRT framework facilitates an easy way to set up router-like devices equipped with communications interfaces such as dual-port Ethernet and Wi-Fi connection.

What’s more, by using the OpenWRT framework, an IoT developer can add now his or her own application (C/C++) to exchange data with a KNX or Z-Wave transceiver. OpenWRT even supports the Lua embedded interpreter.

Next, while DAB-Embedded has built its smart router using the embedded Linux with OpenWRT framework, Belgium’s design house also offers a board support package (BSP) based on the Windows Embedded Compact 2013 software. That’s for IoT developers who have invested in Windows applications and want to use them on the new hardware: the DAB-OWRT-53 smart router.

Later, the embedded design firm plans to release smart router hardware based on the Windows 10 IoT software and Atmel’s SAMA5D family of embedded processors. The Belgian developer of IoT products has vowed to release the second version of its router board based on Atmel’s SAMA5D4 embedded processor and WILC3000 chipset that comes integrated with power amplifier, LNA, switch and power management. Atmel’s WILC3000 single-chip solution boasts IEEE 802.11 b/g/n RF/baseband/MAC link controller and Bluetooth 4.0 connection.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Rolling MCUs, connectivity, security and software into one wearable package


This Android-based, Bluetooth-enabled wearable badge can act as a compass, watch, slideshow app, battery gauge and more.


Did you know that 45.7 million wearable devices are expected to ship this year, up 133.4% from the 19.6 million units shipped in 2014? And by 2019, reports are calling for shipment volumes to reach 126.1 million units, resulting in a five-year CAGR of 45.1. Given this emergence of body-adorned technology, the need for a hardware and software-based turnkey solution has never been so paramount. With this in mind, Atmel has unveiled the first-ever wearable solution that integrates its broad solutions offering all rolled into one.

Phone1

Just in time for Computex 2015, the company has designed a 7cm x 9cm demonstrator around a smart badge concept, which combines low-power embedded processing, wireless, touch and sensor technologies to form an unparalleled turnkey system for virtually any type of wearable application.

This demonstrator converges hardware and software technologies, from Atmel and its partners, into a highly optimized and comprehensive out-of-the-box solution that addresses the complex requirements for the burgeoning wearable market, all while bringing their designs quickly to market. Users can wear it around their neck and display different applications (compass, watch, spirit level, slide show, battery gauge) specialized for the Andriod operating system (OS) and made by Adeneo Embedded.

“Adeneo Embedded has a long standing partnership with Atmel on Linux, Windows Embedded and more recently Android porting activities for AT91SAM ARM based MPUs,” said Yannick Chammings, Adeneo Embedded CEO. “With the collaboration on the Smart Badge concept, implementing Android-based wearable scenarios, Adeneo Embedded will scale OS and SW support to OEMs developing smart, connected, wearable devices.”

Based on Atmel’s embedded connectivity, the demonstrator can interact with other Android mobile phones. The badge uses a 3.5-inch display from Precision Design Associates and embeds MEMS and sensor technology from Bosch Sensortec, as well as memory multi-chip package from Micron combining 4Gb of LPDDR2 + 4GB of eMMC in a single package demonstrator running on the Android KitKat OS. Beyond that, Atmel is also developing a software framework that will allow various software partners to plug in their software and seamlessly work together.

badge1

With the anticipated growth of the wearable space, designers are continually seeking solutions that combine all the necessary and complex technologies into a simple, ready-to-use solution, enabling designers to focus on differentiating their products. The Smart Badge is the first demonstrator to bring together the company’s ultra-low power Atmel | SMART SAMA5D31 MPU, the Atmel | SMART SAM G54 sensor hub solution, a maXTouch mXT112S controller and a SmartConnect WILC3000 Wi-Fi/Bluetooth integrated solution.

“Atmel possesses the most complete, lowest power technology portfolio for wearable devices worldwide,” explains Vince Murdica, who is responsible for Atmel’s sensor-centric business unit. “Atmel’s Smart Badge is the first of many wearable reference designs and platforms to come as we want to ensure when customers think wearables, they think Atmel. We are very focused and excited to help accelerate the growth of the wearable market with turnkey, low power, complete hardware and software solutions.”

Watch the badge in action below!

Atmel unveils a cloud-ready Wi-Fi/Bluetooth combo platform for IoT apps

Atmel has expanded its SmartConnect wireless portfolio with a wireless combo system-on-chip (SoC) for the rapidly growing Internet of Things (IoT) market.

WILC

The new fully-integrated WILC3000 wireless link controller combines Wi-Fi 802.11n and Bluetooth Smart-ready technologies in an ultra-small 4.1mm x 4.1mm Wafer Level Chip Scale Package (WLCSP) with lower power consumption, along with Atmel’s patented adaptive co-existence engine, making it the ideal solution for IoT and wearable applications. Atmel’s WILC3000 Wi-Fi solution offers multiple peripheral interfaces including UART, SPI, I2C, and SDIO, along with the associated cloud-ready connectivity software, making it the perfect wireless connectivity companion to any microprocessor (MPU) running Android or Linux MPUs.

Atmel is also introducing the WINC3400 network controller featuring embedded flash memory which allows the device to host network services stack, Wi-Fi stack, and Bluetooth Smart profiles for rapid design development with no wireless expertise required from the designer. The WINC3400 can be paired with any Atmel AVR® or Atmel | SMART MCUs.

“IoT requires a diverse portfolio of wireless MPUs and MCUs with Bluetooth and Wi-Fi capabilities that will enable cloud access,” said Kaivan Karimi, Atmel Vice President and General Manager of Wireless MCUs. “Adding cloud connectivity to devices in the industrial, medical, wearable, fitness and other consumer markets will require a combination of embedded Wi-Fi with Bluetooth optimized for low battery consumption, and support for out-of-the-box, cloud ready software. Atmel’s SmartConnect WILC3000 and WINC3400 address these requirements by delivering a compact cloud-ready Wi-Fi/Bluetooth-certified platform that helps bring customer products faster to market.”

The latest cloudy-ready Wi-Fi/Bluetooth combo platform is optimized for low-power applications, supporting single-stream 802.11n mode providing up to 72 Mbps throughput, enabling a broad range of use cases. Both devices integrate a power amplifier, LNA, switch and power management unit providing developers with the highest level of integration together with the best link budget for maximum range. The WILC3000 and WINC3400 provide the highest integration for a lower bill of material. The only external clock sources required is a high-speed crystal or oscillator with a wide range of reference clock frequencies supported (14-40 MHz) and a 32.768 kHz clock for sleep operation.

The WINC 3400 network controller offers an On-Chip Network Stack to minimize host CPU requirements. The Network features include TCP, UDP, DHCP, ARP, HTTP, SSL, and DNS. Additionally, the WINC3400 SiP includes Bluetooth Smart profiles allowing connection to advanced low energy application such as smart energy, consumer wellness, home automation, security, proximity detection, entertainment, sports and fitness and automotive. This solution also supports Atmel’s cloud-ready software for simple cloud connectivity.

Ready to add some connectivity to your next design? Explore the entire SmartConnect wireless family here.