Tag Archives: V2V

Harken system helps save lives on the road

Not only will the Internet of Things change the way you live, it will also enhance the way you drive. Before the day where we’ll see driverless cars, the world will have the chance to experience just how embedded technology could drastically alter the way in which we operate vehicles, not to mention save lives along the way. Despite the emergence of wearable devices throughout the marketplace, surprisingly only a few of these devices focus on enhancing safety.

Though it may not receive as much recognition as drunk driving, drowsy driving is a worrisome behavior that puts commuters at risk. In fact, the National Highway Traffic Safety Administration (NHTSA) estimates that tired drivers cause more than 100,000 crashes a year, leading to 40,000 injuries and 1,550 deaths.

Scientists in Valencia, Spain are developing a non-invasive system measures heartbeat and respiratory rate embedded sensors in the seat cover and the seat belt of a vehicle. Created by the Biomechanics Institute (IBV), the Heart and Respiration In-Car Embedded Non-Intrusive Sensors (Harken) system works by measuring the heart rate and respiratory pace of a driver.

When the sensor data indicates a person is dozing off, the researchers envision an alarm going off to wake the driver before control of the vehicle is lost. “The variation in heart and respiratory rate are good indicators of the state of the driver as they are related to fatigue. So when people go into a state of fatigue or drowsiness, modifications appear in their breathing and heart rate; HARKEN can monitor those variables and therefore warn the driver before the onset of symptoms of fatigue,” explained José Solaz, IBV Director of Innovation Markets in Automobile and Mass Transportation.

hrknsysm90870

The two-year project ended in June with a working prototype tested on closed roads. Thanks to its short time-to-market scope, Harken will shortly allow to have vehicles in the streets in order to run tests in real traffic scenarios. “Preliminary tests have led to positive and reliable results, thus, Harken help in the near future to reduce accidents,” added Solaz.

As previously reported in Bits & Pieces, the Internet of Things and embedded technology will pave the way for new electronic functions in vehicles — many of which will help ensure road safety.

 

Take a drive on the IoT with V2V

What platform has become the most sophisticated and intimate personal electronic environment ever? The car. To paraphrase a famous automotive company’s top executive, car companies are transforming the car into a powerful smartphone that allows drivers to carry around, customize, and interact with their digital world. Automotive electronics are currently centered around people (infotainment and communications) and the machine itself (to run the car and provide safety and convenience). Now a third element is emerging; namely, Vehicle-to-Vehicle (V2V) communications. 

Just like that sounds, cars will soon “talk and listen” to one another — automatically. They will share information like proximity, speed, direction, road conditions, as well as other things that have yet to been imagined. The chief driver of V2V is signaling impending collisions so that the cars can automatically take countermeasures. That, of course, means the V2V network will become a critical technology for self- and assisted-driving cars.

V2V

While it may seem revolutionary, V2V is really an evolutionary branch of Internet of Things (IoT) technologies, which are creating a world where smart, secure, and communicating, sensors will become ubiquitous in planes, trains, and automobiles; inside homes; inside commercial buildings; on highways; in cities and towns; in agriculture; in factories; in retail spaces; and worn by and implanted in humans and animals. The Internet of Things could eventually connect everything from cars to cats.

A term that is being used to describe the technologies making such a smart, sensor saturated world is “sensor dust,” which captures the Zeitgeist that super tiny, smart, communicating sensors will be everywhere — like dust.  Sensors, of course, are never just sensors. They are always connected to other things–mainly microcontrollers (MCUs). With the advent of ultra-low power and energy harvesting technology, the sensor-MCU combination has become an ideal, clear, and present foundation for widespread sensor roll out. Sensing often implies by its very nature detection and communication from a distance, and that is where wireless communication comes into play.

The dark side is that remote sensing and communication open the door very wide for bad actors who want to intercept, spoof, and misuse the data streaming freely through the air. So, security (encryption and/or authentication) becomes the final piece of the picture, and arguably the element that makes IoT even possible to be widely adopted. Huge amounts of information are already being collected every day about traffic flow from phone users worldwide (without their knowing it). Such storehouses of data can be mined real time and used to provide personal traffic reports to subscribers while driving. At least that is the story. As the car moves from one place to the other, social networking can be effectuated in real time to locate friends or certain activities and happenings (automotive flash-mob, anyone?). But, what consumers really want their whereabouts and other information out in the open in a completely uncontrolled way? No one. People are becoming extremely sensitive to data insecurity and there is a growing need to trust how the information that is being collected will be used. Without some type of trust, the IoT could be doomed. Maybe the term “Internet of Trust” should be coined to make that point obvious.

Internet of Trust

V2V & IoT

The evolution of V2V and IoT are intimately related because they both will be composed of the very same technological blocks. The overlap is easy to see.  The foundational components of each are miniaturized MCUs, sensors, wireless technology, and security devices that operate using ultra low power. Describing IoT and V2V as equations, they could be expressed in the following way:              

 IoT = (MCU + Sensor + Security + Wireless) Low Power              

V2V = IoT + Car

Equation one might imply that companies that can integrate the factors will lead in the build-out of the IoT market. Equation two effectively states that V2V is the IoT on wheels. In any case, there are certain basic blocks that must be integrated, and they must be integrated in the right way for the particular use-case. IoT and V2V design flexibility and time to market will matter, a lot.  (But that is a topic for another time.) The growth of the connected car platform is expected to be remarkable. That makes sense since the car is the one place that GPS/NAV systems, smart phones, tablets, DVDs, CDs, MP3s, Bluetooth, satellite radio, high power stereo amps, speakers, voice control, and the Internet can all come together and interact with each other.

Such convergence is making the car into an advanced personal hub. Market researchers have estimated that revenue for the connected car market will grow from $17 billion in 2012 to $54.5 billion in 2018 for hardware and services (telematics, telecom, and in-vehicle). Unit sales of embedded, tethered, and smartphone equipped cars are expected to grow from around 10 million units in 2012 to 67 million by 2018, with over 50% of that volume being embedded systems that are controlled by media and sensor control systems.

Media control systems are not only becoming a standard feature in new cars, but according to consumer electronics and auto industry researchers, a chief reason that people are selecting certain cars over others. Electronics are becoming a main forethought rather than a minor afterthought for car buyers. Sophisticated electronic systems are becoming mandatory, and this powerful dynamic will only accelerate as more electronics products, features, and services are sped to the market by the car makers, consumer electronics companies, smartphone makers, and software providers.

However, all this electronic stuff has presented a huge challenge, which is safety. Using products such as the cell phone in the car actually interferes badly with driving. Anyone who has placed a call, or even worse tried to text while driving (and who hasn’t), can testify to the fact that dial-driving is a bad idea. So, what can be done to get cars electronics, phones, and humans to play well together in a safe way? The solution has been summed up succinctly by the CEO of a major auto maker who refers to in-car control systems as being able to free the user from the tyrannies and dangers of messing with that little phone while you drive. Rather than a car and phone (and other electronics) being at odds with each other, the car is transforming into the newest electronic platform: one that is highly integrated, easy to use, and distinct from anything else to date. It is easy to see that the emerging alloyed car-plus-consumer platform is primed for cars to talk to one another without the need of human intervention.

The list of electronics functions in cars is evolving fast and will likely include multi-person gaming; GPS with location-based services such as real time traffic and road condition updates; vehicle monitoring for maintenance status, performance, and eco-friendliness; vehicle and personal security; connection to home control/security systems; social networking opportunities related to location, and especially safety. In fact, the US Deportment and Transportation (DoT) and National Highway Traffic Safety Administration (NHTSA) are partnering with research institutions and auto companies to collaborate on technology development and interoperability of V2V to promote traffic safety. V2V can transform the automotive experience more than anything since Henry Ford’s assembly line made cars available to the working class. The notion of a car driving itself still sounds like pure science fiction, but prototypes are already driving themselves. So, it is just a question of time before we have auto-automobiles. (auto2mobiles) where you simply have to tell your personal digital assistant where you want to go, then take a seat in your personal infotainment pod until you get there.

car-to-x_daimler

But, well before that happens we will see significant improvements in safety due to V2V. It is clear that the lucrative auto electronics platform is already right in the sights of all car makers, and they clearly plan to take it to the next level and the next level after that, with no end in sight.  As noted, electronic things sell cars, and more advanced electronics will show up in the more advanced cars. Then, last year’s advanced systems will naturally move down-market, so even more advanced systems will be needed for next year’s up-market cars. This endless cycle of innovation will drive automotive companies to create V2V and self-driving ecosystems sooner rather than later. As we move towards the self-driving omega-point we will see V2V and IoT showing up very early in the journey.

V2V (the IoT on wheels) will make it hard to tell where the car ends and the phone, tablet, computer, and sensors begin.

Interested in learning more about Atmel’s automotive portfolio? Check out our automotive-qualified category breakdown below:

Vehicle to vehicle communications, or V2V

While perusing my latest copy of American Motorcyclist magazine, I was pleased to see an article on how vehicle-to-vehicle (V2V) communication might make roads safer for motorcyclists. V2V is where vehicles have their own dedicated micro-controller and wireless chip and security chip. Atmel makes all three, both as separate parts and combined into one. The vehicles will have a wireless RF “bubble” that travels with them. When two vehicle’s bubbles “touch”, then they will authenticate it is not some hacker on a bridge embankment. Then the vehicles can exchange information. It is anticipated that the system will have GPS, so each vehicle will know its exact position.

Drunk-vs-distracted

While drunk driving fatalities have plummeted, distracted driving is killing twice as many people.

As a guy with a broken collarbone that got hit from behind while my motorcycle was stopped for a red light, I think this is great. If vehicles can communicate they can warn each other of impending collisions. Auto manufacturers anticipate verbal and “shaker” warning for the cars, or so-called “cages” as we motorcyclists call them.

The AMA publishes the magazine and I am a proud supporter. One thing I disagree with is that the AMA wants motorcycles to be nearly silent. Now I hate open pipes, that is a moron thing to do since you can’t tune the motor because of the reversion pulses coming off the end of pipes. But silent bikes are too far in the other direction. With half the driver’s noses stuck in a smartphone while they drive, a little noise alerts them to my presence.

This V2V technology may make all this moot. I won’t need loud pipes if vehicles actively work to avoid collisions. I touched on this in an earlier blog post—Car-to-car communication.