Tag Archives: Trusted Platform Module

Are you designing for the latest automotive embedded system?


Eventually, self-driving cars will arrive. But until then, here’s a look at what will drive that progression.


The next arrow of development is set for automotive

We all have seen it. We all have read about it in your front-center technology news outlets. The next forefront for technology will take place in the vehicle. The growing market fitted with the feature deviation trend does not appeal to the vision of customizing more traditional un-connected, oiled and commonly leveraged chassis vehicles of today. Instead, ubiquity in smartphones have curved a design trend, now mature while making way for the connected car platform. The awaiting junction is here for more integration of the automotive software stack.  Opportunities for the connected car market are huge, but multiple challenges still exist. Life-cycles in the development of automotive and the mobile industry are a serious barrier for the future of connected cars. Simply, vehicles take much longer to develop than smartphones other portable gadgetry. More integration from vendors and suppliers are involved with the expertise to seamlessly fit the intended blueprint of the design. In fact, new features such as the operating system are becoming more prevalent, while the demand for sophisticated and centrally operated embedded systems are taking the height of the evolution. This means more dependence on integration of data from various channels, actuators, and sensors — the faculty to operate all the new uses cases such as automatic emergency response systems are functionality requiring more SoC embedded system requirements.

A step toward the connected car - ecall and how it works

What is happening now?

People. Process. Governance. Adoption. Let’s look at the similarities stemmed from change. We are going to witness new safety laws and revised regulations coming through the industry. These new laws will dictate the demand for connectivity. Indeed, drawing importance this 2015 year with the requirement set by 2018, European Parliament voted in favor of eCall regulation. Cars in Europe must be equipped with eCall, a system that automatically contacts emergency services directing them to the vehicle location in the event of an emergency. The automotive and mobile industries have different regional and market objectives. Together, all the participants in both market segments will need to find ways to collaborate in order to satisfy consumer connectivity needs. Case in point, Chrysler has partnered with Nextel to successfully connect cars like their Dodge Viper, while General Motors uses AT&T as its mobile development partner.

General Motors selected AT&T as its mobile partner

What is resonating from the sales floor and customer perspective?

The demand is increasing for more sophistication and integration of software in the cabin of cars. This is happening from the manufacturer to the supplier network then to the integration partners — all are becoming more engaged to achieve the single outcome, pacing toward the movement to the connected car. Stretched as far as the actual retail outlets, auto dealers are shifting their practice to be more tech savvy, too. The advent of the smart  vehicle has already dramatically changed the dealership model, while more transformation awaits the consumer.

On the sales floor as well as the on-boarding experience, sales reps must plan to spend an hour or more teaching customers how to use their car’s advanced technology. But still, these are only a few mentioned scenarios where things have changed in relation to cars and how they are sold and even to the point of how they are distributed, owned, and serviced. One thing for certain, though, is that the design and user trend are intersecting to help shape the demand and experience a driver wants in the connected car. This is further bolstered by the fast paced evolution of smartphones and the marketing experiences now brought forth by the rapid adoption and prolific expansion of the mobile industry tethered by their very seamless and highly evolved experiences drawn from their preferred apps.

Today, customer experiences are becoming more tailored while users, albeit on the screen or engaged with their mobile devices are getting highly acquainted with the expectation of “picking up from where I left off” regardless of what channel, medium, device, or platform.  Seamless experiences are breaking through the market.  We witness Uber, where users initialize their click on their smartphone then follows by telemetry promoted from Uber drivers and back to the users smart phone.  In fact, this happens vis versa, Uber driver’s have information on their console showing customer location and order of priority.  Real life interactions are being further enhanced by real-time data, connecting one device to draw forth another platform to continue the journey.  Transportation is one of the areas where we can see real-time solutions changing our day-to-day engagement.  Some of these are being brought forth by Atmel’s IoT cloud partners such as PubNub where they leverage their stack in devices to offer dispatch, vehicle state, and geo fencing for many vehicle platforms.  Companies like Lixar, LoadSmart, GetTaxi, Sidecar, Uber, Lyft are using real-time technologies as integral workings to their integrated vehicle platforms.

The design trajectory for connected cars continues to follow this arrow forward

Cars are becoming more of a software platform where value chain add-ons tied to an ecosystem are enabled within the software tethered by the cloud where data will continue to enhance the experience. The design trajectory for connected cars follow this software integration arrow.  Today, the demand emphasizes mobility along with required connectivity to customer services and advanced functions like power management for electric vehicles, where firmware/software updates further produce refined outcomes in the driver experience (range of car, battery management, other driver assisted functionalities).

Carmakers and mobile operators are debating the best way to connect the car to the web. Built-in options could provide stronger connections, but some consumers prefer tethering their existing smartphone to the car via Bluetooth or USB cable so they can have full access to their personal contacts and playlists. Connected car services will eventually make its way to the broader car market where embedded connections and embedded systems supporting these connections will begin to leverage various needs to integrate traditional desperate signals into a more centrally managed console.

Proliferation of the stack

The arrow of design for connected cars will demand more development, bolstering the concept that software and embedded systems factored with newly-introduced actuators and sensors will become more prevalent. We’re talking about “software on wheels,” “SoC on wheels,” and “secured mobility.”

Design wise, the cost-effective trend will still remain with performance embedded systems. Many new cars may have extremely broad range of sensor and actuator‑based IoT designs which can be implemented on a single compact certified wireless module.

The arrow for connected cars will demand more development bolstering the concept that software and embedded systems factored with newly introduced actuators & sensors will become more prevalent; “software on wheels”, “SoC on wheels” and “secured mobility”.

Similarly, having fastest startup times by performing the task with a high-performance MCU vs MPU, is economic for a designer. It can not only reduce significant bill of materials cost, development resources, sculpted form factor, custom wireless design capabilities, but also minimize the board footprint. Aside from that, ARM has various IoT device development options, offering partner ecosystems with modules that have open standards. This ensures ease of IoT or connected car connectivity by having type approval certification through restrictive access to the communications stacks.

Drivers will be prompted with new end user applications — demand more deterministic code and processing with chips that support the secure memory capacity to build and house the software stack in these connected car applications.

Feature upon feature, layer upon layer of software combined with characteristics drawn from the events committed by drivers, tires, wheels, steering, location, telemetry, etc. Adapted speed and braking technologies are emerging now into various connected car makes, taking the traditional ABS concept to even higher levels combined with intelligence, along with controlled steering and better GPS systems, which will soon enable interim or cruise hands-free driving and parking.

Connected Car Evolution

Longer term, the technological advances behind the connected car will eventually lead to self-driving vehicles, but that very disruptive concept is still far out.

Where lies innovation and change is disruption

Like every eventual market disruption, there will be the in-between development of this connected car evolution. Innovative apps are everywhere, especially the paradigm where consumers have adopted to the seamless transitional experiences offered by apps and smartphones. Our need for ubiquitous connectivity and mobility, no matter where we are physically, is changing our vehicles into mobile platforms that want us users to seamlessly be connected to the world. This said demand for connectivity increases with the cost and devices involved will become more available. Cars as well as other mobility platforms are increasingly becoming connected packages with intelligent embedded systems. Cars are offering more than just entertainment — beyond providing richer multimedia features and in-car Internet access.  Further integration of secure and trusted vital data and connectivity points (hardware security/processing, crypto memory, and crypto authentication) can enable innovative navigation, safety and predictive maintenance capabilities.

Carmakers are worried about recent hacks,  especially with issues of security and reliability, making it unlikely that they will be open to every kind of app.  They’ll want to maintain some manufactured control framework and secure intrusion thwarting with developers, while also limiting the number of apps available in the car managing what goes or conflicts with the experience and safety measures.  Importantly, we are taking notice even now. Disruption comes fast, and Apple and others have been mentioned to enter this connected car market. This is the new frontier for technological equity scaling and technology brand appeal. Much like what we seen in the earlier models of Blackberry to smartphones, those late in the developmental evolution of their platforms may be forced adrift or implode by the market.

No one is arguing it will happen. Eventually, self-driving cars will arrive.  But for now, it remains a futuristic concept.

What can we do now in the invention, design and development process?

The broader output of manufactured cars will need to continue in leveraging new designs that take in more integration of traditional siloed integration vendors so that the emergence of more unified and centrally managed embedded controls can make its way. Hence, the importance now exists in the DNA of a holistically designed platform fitted with portfolio of processors and security to take on new service models and applications.

This year, we have compiled an interesting mixture of technical articles to support the development and engineering of car access systems, CAN and LIN networks, Ethernet in the car, capacitive interfaces and capacitive proximity measurement.

In parallel to the support of helping map toward the progress and evolution of the connected car, a new era of design exists. One in which the  platform demands embedded controls to evenly match their design characteristics and application use cases. We want to also highlight the highest performing ARM Cortex-M7 based MCU in the market, combining exceptional memory and connectivity options for leading design flexibility. The Atmel | SMART ARM Cortex-M7 family is ideal for automotive, IoT and industrial connectivity markets. These SAM V/E/S family of microcontrollers are the industry’s highest performing Cortex-M microcontrollers enhancing performance, while keeping cost and power consumption in check.

So are you designing for the latest automotive, IoT, or industrial product? Here’s a few things to keep in mind:

  • Optimized for real-time deterministic code execution and low latency peripheral data access
  • Six-stage dual-issue pipeline delivering 1500 CoreMarks at 300MHz
  • Automotive-qualified ARM Cortex-M7 MCUs with Audio Video Bridging (AVB) over Ethernet and Media LB peripheral support (only device in the market today)
  • M7 provides 32-bit floating point DSP capability as well as faster execution times with greater clock speed, floating point and twice the DSP power of the M4

We are taking the connected car design to the next performance level — having high-speed connectivity, high-density on-chip memory, and a solid ecosystem of design engineering tools. Recently, Atmel’s Timothy Grai added a unveiling point to the DSP story in Cortex-M7 processor fabric. True DSPs don’t do control and logical functions well; they generally lack the breadth of peripherals available on MCUs. “The attraction of the M7 is that it does both — DSP functions and control functions — hence it can be classified as a digital signal controller (DSC).” Grai quoted the example of Atmel’s SAM V70 and SAM V71 microcontrollers are used to connect end-nodes like infotainment audio amplifiers to the emerging Ethernet AVB network. In an audio amplifier, you receive a specific audio format that has to be converted, filtered, and modulated to match the requirement for each specific speaker in the car. Ethernet and DSP capabilities are required at the same time.

“The the audio amplifier in infotainment applications is a good example of DSC; a mix of MCU capabilities and peripherals plus DSP capability for audio processing. Most of the time, the main processor does not integrate Ethernet AVB, as the infotainment connectivity is based on Ethernet standard,” Grai said. “Large SoCs, which usually don’t have Ethernet interface, have slow start-up time and high power requirements. Atmel’s SAM V7x MCUs allow fast network start-up and facilitate power moding.”

Atmel has innovative memory technology in its DNA — critical to help fuel connected car and IoT product designers. It allows them to run the multiple communication stacks for applications using the same MCU without adding external memory. Avoiding external memories reduces the PCB footprint, lowers the BOM cost and eliminates the complexity of high-speed PCB design when pushing the performance to a maximum.

Importantly, the Atmel | SMART ARM Cortex-M7 family achieves a 1500 CoreMark Score, delivering superior connectivity options and unique memory architecture that can accommodate the said evolve of the eventual “SoC on wheels” design path for the connected car.

How to get started

  1. Download this white paper detailing how to run more complex algorithms at higher speeds.
  2. Check out the Atmel Automotive Compilation.
  3. Attend hands-on training onboard the Atmel Tech on Tour trailer. Following these sessions, you will walk away with the Atmel | SMART SAM V71 Xplained Ultra Evaluation Kit.
  4. Design the newest wave of embedded systems using SAM E70, SAM S70, or SAM V70 (ideal for automotive, IoT, smart gateways, industrial automation and drone applications, while the auto-grade SAM V70 and SAM V71 are ideal for telematics, audio amplifiers and advanced media connectivity).

IMG_3659

[Images: European Commission, GSMA]

3 design hooks of Atmel MCUs for connected cars


The MPU and MCU worlds are constantly converging and colliding, and the difference between them is not a mere on-off switch — it’s more of a sliding bar. 


In February 2015, BMW reported that it patched the security flaw which could allow hackers to remotely unlock the doors of more than 2 million BMW, Mini and Rolls-Royce vehicles. Earlier, researchers at ADAC, a German motorist association, had demonstrated how they could intercept communications with BMW’s ConnectedDrive telematics service and unlock the doors.

security-needs-for-connected-car-by-atmel

BMW uses SIM card installed in the car to connect to a smartphone app over the Internet. Here, the ADAC researchers created a fake mobile network and tricked nearby cars into taking commands by reverse engineering the BMW’s telematics software.

The BMW hacking episode was a rude awakening for the connected car movement. The fact that prominent features like advanced driver assistance systems (ADAS) are all about safety and security is also a testament is that secure connectivity will be a prime consideration for the Internet of Cars.

Built-in Security

Atmel is confident that it can establish secure connections for the vehicles by merging its security expertise with performance and low-power gains of ARM Cortex-M7 microcontrollers. The San Jose, California-based chip supplier claims to have launched the industry’s first auto-qualified M7-based MCUs with Ethernet AVB and media LB peripherals. In addition, this high-end MCU series for in-vehicle infotainment offers the CAN 2.0 and CAN flexible data rate controller for higher bandwidth requirements.

Nicolas Schieli, Automotive MCU Marketing Director at Atmel, acknowledges that security is something new in the automotive environment that needs to be tackled as cars become more connected. “Anything can connect to the controller area network (CAN) data links.”

Schieli notes that the Cotex-M7 has embedded enhanced security features within its architecture and scalability. On top of that, Atmel is using its years of expertise in Trusted Platform Modules and crypto memories to securely connect cars to the Internet, not to mention the on-chip SHA and AES crypto engines in SAM E70/V70/V71 microcontrollers for encryption of data streams. “These built-in security features accelerate authentication of both firmware and applications.”

Crypto

Schieli notes that the Cotex-M7 has embedded enhanced security features within its architecture and scalability. On top of that, Atmel is using its years of expertise in Trusted Platform Modules and crypto memories to securely connect cars to the Internet, not to mention the on-chip SHA and AES crypto engines in SAM E70/V70/V71 microcontrollers for encryption of data streams. “These built-in security features accelerate authentication of both firmware and applications.”

He explained how the access to the Flash, SRAM, core registers and internal peripherals is blocked to enable security. It’s done either through the SW-DP/JTAG-DP interface or the Fast Flash Programming Interface. The automotive-qualified SAM V70 and V71 microcontrollers support Ethernet AVB and Media LB standards, and they are targeted for in-vehicle infotainment connectivity, audio amplifiers, telematics and head control units companion devices.

Software Support

The second major advantage that Atmel boasts in the connected car environment is software expertise and an ecosystem to support infotainment applications. For instance, a complete automotive Ethernet Audio Video Bridging (AVB) stack is being ported to the SAM V71 microcontrollers.

Software support is a key leverage in highly fragmented markets like automotive electronics. Atmel’s software package encompasses peripheral drivers, open-source middleware and real-time operating system (RTOS) features. The middleware features include USB class drivers, Ethernet stacks, storage file systems and JPEG encoder and decoder.

Next, the company offers support for several RTOS platforms like RTX, embOS, Thread-X, FreeRTOS and NuttX. Atmel also facilitates the software porting of any proprietary or commercial RTOS and middleware. Moreover, the MCU supplier from San Jose features support for specific automotive software such as AUTOSAR and Ethernet AVB stacks.

Atmel supports IDEs such as IAR or ARM MDK and Atmel Studio and it provides a full-featured board that covers all MCU series, including E70, V70 and V71 devices. And, a single board can cover all Atmel microcontrollers. Moreover, the MCU supplier provides Board Support Package for Xplained evaluation kit and easy porting to customer boards through board definition file (board.h).

Beyond that, Atmel is packing more functionality and software features into its M7 microcontrollers. Take SAM V71 devices, for example, which have three software-selectable low-power modes: sleep, wait and backup. In sleep mode, the processor is stopped while all other functions can be kept running. While in wait mode, all clocks and functions are stopped but some peripherals can be configured to wake up the system based on predefined conditions. In backup mode, RTT, RTC and wake-up logic are running. Furthermore, the microcontroller can meet the most stringent key-off requirements while retaining 1Kbyte of SRAM and wake-up on CAN.

Transition from MPU to MCU

Cortex-M7 is pushing the microcontroller performance in the realm of microprocessors. MPUs, which boast memory management unit and can run operating systems like Linux, eventually lead to higher memory costs. “Automakers and systems integrators are increasingly challenged in getting performance point breakthrough because they are running out of Flash capacity,” explained Schieli.

On the other hand, automotive OEMs are trying to squeeze costs in order to bring the connected car riches to non-luxury vehicles, and here M7 microcontrollers can help bring down costs and improve the simplification of car connectivity.

The M7 microcontrollers enable automotive embedded systems without the requirement of a Linux head and can target applications with high performance while running RTOS or bare metal implementation. In other words, M7 opens up avenues for automotive OEMs if they want to make a transition from MPU to MCU for cost benefits.

However, the MPU and MCU worlds are constantly converging and colliding, and the difference between them is not a mere on-off switch. It’s more of a sliding bar. Atmel, having worked on both sides of the fence, can help hardware developers to manage that sliding bar well. “Atmel is using M7 architecture to help bridge the gap between microprocessors and high-end MCUs,” Schieli concludes.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

4 reasons why Atmel is ready to ride the IoT wave


The IoT recipe comprises of three key technology components: Sensing, computing and communications.


In 2014, a Goldman Sachs’ report took many people by surprise when it picked Atmel Corporation as the company best positioned to take advantage of the rising Internet of Things (IoT) tsunami. At the same time, the report omitted tech industry giants like Apple and Google from the list of companies that could make a significant impact on the rapidly expanding IoT business. So what makes Atmel so special in the IoT arena?

The San Jose, California–based chipmaker has been proactively building its ‘SMART’ brand of 32-bit ARM-based microcontrollers that boasts an end-to-end design platform for connected devices in the IoT realm. The company with two decades of experience in the MCU business was among the first to license ARM’s low-power processors for IoT chips that target smart home, industrial automation, wearable electronics and more.

Atmel and IoT (Internet of Things)

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market.

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market

A closer look at the IoT ingredients and Atmel’s product portfolio shows why Goldman Sachs called Atmel a leader in the IoT space. For starters, Atmel is among the handful of chipmakers that cover all the bases in IoT hardware value chain: MCUs, sensors and wireless connectivity.

1. A Complete IoT Recipe

The IoT recipe comprises of three key technology components: Sensing, computing and communications. Atmel offers sensor products and is a market leader in MCU-centric sensor fusion solutions than encompass context awareness, embedded vision, biometric recognition, etc.

For computation—handling tasks related to signal processing, bit manipulation, encryption, etc.—the chipmaker from Silicon Valley has been offering a diverse array of ARM-based microcontrollers for connected devices in the IoT space.

Atmel-IoT-Low-Power-wearable

Atmel has reaffirmed its IoT commitment through a number of acquisitions.

Finally, for wireless connectivity, Atmel has cobbled a broad portfolio made up of low-power Wi-Fi, Bluetooth and Zigbee radio technologies. Atmel’s $140 million acquisition of Newport Media in 2014 was a bid to accelerate the development of low-power Wi-Fi and Bluetooth chips for IoT applications. Moreover, Atmel could use Newport’s product expertise in Wi-Fi communications for TV tuners to make TV an integral part of the smart home solutions.

Furthermore, communications across the Internet depends on the TCP/IP stack, which is a 32-bit protocol for transmitting packets on the Internet. Atmel’s microcontrollers are based on 32-bit ARM cores and are well suited for TCP/IP-centric Internet communications fabric.

2. Low Power Leadership

In February 2014, Atmel announced the entry-level ARM Cortex M0+-based microcontrollers for the IoT market. The SAM D series of low-power MCUs—comprising of D21, D10 and D11 versions—featured Atmel’s signature high-end features like peripheral touch controller, USB interface and SERCOM module. The connected peripherals work flawlessly with Cortex M0+ CPU through the Event System that allows system developers to chain events in software and use an event to trigger a peripheral without CPU involvement.

According to Andreas Eieland, Director of Product Marketing for Atmel’s MCU Business Unit, the IoT design is largely about three things: Battery life, cost and ease-of-use. The SAM D microcontrollers aim to bring the ease-of-use and price-to-performance ratio to the IoT products like smartwatches where energy efficiency is crucial. Atmel’s SAM D family of microcontrollers was steadily building a case for IoT market when the company’s SAM L21 microcontroller rocked the semiconductor industry in March 2015 by claiming the leadership in low-power Cortex-M IoT design.

Atmel’s SAM L21 became the lowest power ARM Cortex-M microcontroller when it topped the EEMBC benchmark measurements. It’s plausible that another MCU maker takes over the EEMBC benchmarks in the coming months. However, according to Atmel’s Eieland, what’s important is the range of power-saving options that an MCU can bring to product developers.

“There are many avenues to go down on the low path, but they are getting complex,” Eieland added. He quoted features like multiple clock domains, event management system and sleepwalking that provide additional levels of configurability for IoT product developers. Such a set of low-power technologies that evolves in successive MCU families can provide product developers with a common platform and a control on their initiatives to lower power consumption.

3. Coping with Digital Insecurity

In the IoT environment, multiple device types communicate with each other over a multitude of wireless interfaces like Wi-Fi and Bluetooth Low Energy. And IoT product developers are largely on their own when it comes to securing the system. The IoT security is a new domain with few standards and IoT product developers heavily rely on the security expertise of chip suppliers.

Atmel offers embedded security solutions for IoT designs.

Atmel, with many years of experience in crypto hardware and Trusted Platform Modules, is among the first to offer specialized security hardware for the IoT market. It has recently shipped a crypto authentication device that has integrated the Elliptic Curve Diffie-Hellman (ECDH) security protocol. Atmel’s ATECC508A chip provides confidentiality, data integrity and authentication in systems with MCUs or MPUs running encryption/decryption algorithms like AES in software.

4. Power of the Platform

The popularity of 8-bit AVR microcontrollers is a testament to the power of the platform; once you learn to work on one MCU, you can work on any of the AVR family microcontrollers. And same goes for Atmel’s Smart family of microcontrollers aimed for the IoT market. While ARM shows a similarity among its processors, Atmel exhibits the same trait in the use of its peripherals.

Low-power SAM L21 builds on features of SAM D MCUs.

A design engineer can conveniently work on Cortex-M3 and Cortex -M0+ processor after having learned the instruction set for Cortex-M4. Likewise, Atmel’s set of peripherals for low-power IoT applications complements the ARM core benefits. Atmel’s standard features like sleep modes, sleepwalking and event system are optimized for ultra-low-power use, and they can extend IoT battery lifetime from years to decades.

Atmel, a semiconductor outfit once focused on memory and standard products, began its transformation toward becoming an MCU company about eight years ago. That’s when it also started to build a broad portfolio of wireless connectivity solutions. In retrospect, those were all the right moves. Fast forward to 2015, Atmel seems ready to ride on the market wave created by the IoT technology juggernaut.

Interested? You may also want to read:

Atmel’s L21 MCU for IoT Tops Low Power Benchmark

Atmel’s New Car MCU Tips Imminent SoC Journey

Atmel’s Sensor Hub Ready to Wear


Majeed Ahmad is author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

TPM: The heavy artillery of cryptography

Data security is becoming a virtual battleground — evident by the number of major data breaches that have broken out at retailers such as Target, Staples, Dairy Queen, Home Depot and EBay, at major banks such as JP Morgan, and at many other institutions worldwide. The recent spate of security viruses such as Heartbleed, Shellshock, Poodle, and BadUSB (and who knows what’s next) have been creating serious angst and concern. And, rightfully so. The question is what exactly should you bring to the cyber battleground to protect your assets? This question matters because everyone who is using software to store cryptographic keys is vulnerable to losing sensitive personal data, and today that is just about everybody. So, choose your weapons carefully.

Artilerry

Fortunately, there are weapons now available that are very powerful while still being cost-effective. The strongest data protection available comes from hardware key storage, which beats software key storage every time. Keys are what make cryptography possible, and keeping secret keys secret is the secret to cryptography. Atmel’s portfolio contains a range of innovative and robust hardware-based security products, with the heavy artillery being the Trusted Platform Module (TPM).

TPM

The TPM is a cryptographic device with heavy cryptographic firepower, such as Platform Configuration Registers, protected user configurable non-volatile storage, an enforced key hierarchy, and the ability to both seal and bind data to a TPM. It doesn’t stop there. Atmel’s TPM has a variety of Federal Information Processing Standards (FIPS) 140-2 certified cryptographic algorithms (such as RSA, SHA1, AES, RNG, and HMAC) and various sophisticated physical security counter-measures. The TPM can be used right out-of-the-box with standards-based commands defined by the Trusted Computing Group, along with a set of Atmel-specific commands, which are tested and ready to counter real world attacks.

The Arsenal

Platform Configuration Registers and Secure Boot

One of the important weapons contained in the TPM is a bank of Platform Configuration Registers (PCRs), which use cryptographic hashing functions. These registers can be used to ensure that only trusted code gets loaded at boot time of the system. This is done by using the existing data in a PCR as one input to a hashing function with the other input being new data. The result of that hashing function becomes the new PCR value that will be used as the input to the next hashing function with the next round of new data. This process provides security by continuously changing the value of the PCR.

Flor

As the PCR value gets updated, the updated values can then be compared with known hash values stored in the system. If the reference values previously stored in the TPM compare correctly with the newly generated PCR values, then the inputs to the hashing function (new data in the diagram) are proven to have been exactly the same as the reference inputs whose hash is stored on the TPM. Such matching of the hash values verifies the inputs as being authentic.

The PCR flow just described is very useful when enforcing secure boot of the system. Unless the hashes match showing that the code is, indeed, what it is supposed to be, the code will not be loaded. Even if a byte is added, deleted, changed, or if a bit is modified, the system will not boot. For secure boot, the data input to the hashing function is a piece of the BIOS (or operating system).

User Configurable Non-Volatile Storage

Another weapon is user-configurable, non-volatile storage with multiple configuration options. What this means is that the user is presented with several ways to restrict the access and use of the memory space, such as by password, physical presence of the user, and PCR states. Additionally, the memory space can be set up so that it can be written only once, not read until the next write or startup of the TPM, not written to until the next startup of the TPM, and others.

Enforced Key Hierarchy

The TPM also incorporates an enforced key hierarchy, meaning that the keys must have another key acting as a parent key (i.e. a key higher in a hierarchy) for that key to get loaded into the TPM. The authorization information for the parent key needs to be known before the child key can be used, thereby adding another layer of security.

Binding and Sealing Data

Another part of the TPM’s arsenal is the ability to bind and/or seal data to the TPM. A seal operation keeps the data contained (i.e. “sealed”) so that it can only be accessed if a particular pre-defined configuration of the system has been reached. This pre-defined configuration is held within the PCRs on the TPM. The TPM will not unseal the data until the platform configuration matches the configuration stored within the PCRs.

A bind operation creates encrypted data blobs (i.e. binary large objects) that are bound to a private key that is held within the TPM. The data within the blob can only be decrypted with the private key in the TPM. Thus, the data is said to be “bound” to that key — such keys can be reused for different sets of data.

The Armor 

So the Atmel TPM has some pretty cool weapons in its arsenal, but does it have any armor? The answer is yes it does!

FIPS 140-2 Certified 

Atmel has dozens of FIPS 140-2 full module-level certified devices with various I/O’s including LPC, SPI, and I2C. The TPM uses a number of FIPS certified algorithms to perform its operations. These standards were developed, tested, and certified by the United States federal government for use in computer systems. The TPM’s FIPS certified algorithms include RSA, SHA1, HMAC, AES, RNG and CVL (find out more details on Atmel’s TPM FIPS certifications here).

1024px-MET_Armures

Active Metal Shield

The TPM has built-in physical armor of its own. A serpentine active metal shield with tamper detection covers the entire device. If someone attempts to penetrate this shield to see the structures beneath it, the TPM can detect this and go into a fault condition that prevents further actions on the TPM.

Why TPM?

You might be asking, “Why can’t all those functions just be done in software?” While some of the protections can be provided in software, software alone is not nearly as robust as a hardware-based system. That is because software has bugs, despite how hard the developers try to eliminate them, and hackers can exploit those bugs to gain access to supposedly secure systems. TPM, on the other hand,stores secret keys in protected hardware that hackers cannot get access to, and they cannot attack what they cannot see.

The TPM embeds intelligence via an on-board microcontroller to manage and process cryptographic functions. The commands used by the Atmel TPM have been defined and vetted by the Trusted Computing Group (TCG), which is a global consortium of companies established to define robust standards for hardware security. Furthermore, the Atmel TPM has been successfully tested against TCG’s Compliance Test Suite to ensure conformance. Security is also enhanced because secrets never leave the TPM unless they have been encrypted.

With the battle for your data being an on-going reality, it simply makes sense to fight back with the heaviest artillery available. Combining all the weaponry and armor in one small, strong, cost effective, standards-based and certified package makes the Atmel TPM cryptographic the ideal choice for your arsenal.

This blog was contributed by Tom Moulton, Atmel Firmware Validation Engineer.

Shouldn’t security be a standard?

Security matters now more than ever, so why isn’t security a standard feature in all digital systems? Luckily, there is a standard for security and it is literally standards-based. It is called TPM. TPM, which stands for Trusted Platform Module, can be thought of as a microcontroller that can take a punch, and come back for more.

“You guys give up, or are you thirsty for more?"

“You guys give up, or are you thirsty for more?”

The TPM is a small integrated circuit with an on-board microcontroller, secure hardware-based private key generation and storage, and other cryptographic functions (e.g. digital signatures, key exchange, etc.), and is a superb way to secure email, secure web access, and protect local data. It is becoming very clear just how damaging loss of personal data can be. Just ask Target stores, Home Depot, Brazilian banks, Healthcare.gov, JP Morgan, and the estimated billions of victims of the Russian “CyberVor” gang of hackers. (What the hack! You can also follow along with the latest breaches here.) The world has become a serious hackathon with real consequences; and, unfortunately, it will just get worse with the increase of mobile communications, cloud computing, and the growth of autonomous computing devices and the Internet of Things.

What can be done about growing threats against secure data?

The TPM is a perfect fit for overall security. So, just how does the TPM increase security? There are four main capabilities:

  1. Furnish platform integrity
  2. Perform authentication (asymmetric)
  3. Implement secure communication
  4. Ensure IP protection

These capabilities have been designed into TPM devices according to the guidance of an industry consortium called the Trusted Computing Group (TCG), whose members include many of the 800-pound gorillas of the computing, networking, software, semiconductor, security, automotive, and consumer industries. These companies include Intel, Dell, Microsoft, among many others. The heft of these entities is one of the vectors that is driving the strength of TPM’s protections, creation of TPM devices, and ultimately accelerating TPM’s adoption. The TPM provides security in hardware, which beats software based security every time. And that matters, a lot.

TPM Functions

Atmel TPM devices come complete with cryptographic algorithms for RSA (with 512, 1024, and 2048 bit keys), SHA-1, HMAC, AES, and Random Number Generator (RNG). We won’t go into the mathematical details here, but note that Atmel’s TPM has been Federal Information Processing Standards (FIPS) 140-2 certified, which attests to its high level of robustness. And, that is a big deal. These algorithms are built right into Atmel TPMs together with supporting software serve to accomplish multiple security functions in a single device.

Each TPM comes with a unique key called an endorsement key that can also be used as part of a certificate chain to prevent counterfeiting. With over 100 commands, the Atmel TPM can execute a variety of actions such as key generation and authorization checks. It also provides data encryption, storage, signing, and binding just to name a few.

An important way that TPMs protect against physical attacks is by a shielded area that securely stores private keys and data, and is not vulnerable to the types of attacks to which software key storage is subjected.

Hack1

But the question really is, “What can the TPM do for you?”  The TPM is instrumental in systems that implement “Root of Trust” (i.e. data integrity and authentication) schemes.

Root of trust schemes use hashing functions as the BIOS boots to ensure that there have been no unwanted changes to the BIOS code since the previous boot. The hashing can continue up the chain into the OS. If the hash (i.e. digest) does not match the expected result, then the system can limit access, or even shut down to prevent malicious code from executing.  This is the method used in Microsoft’s Bitlocker approach on PCs, for example. The TPM can help to easily encrypt an entire hard drive and that can only be unlocked for decryption by the key that is present on the TPM or a backup key held in a secure location.

Additionally, the TPM is a great resource in the embedded world where home automation, access points, consumer, medical, and automotive systems are required. As technology continues to grow to a wide spectrum of powerful and varying platforms, the TPM’s role will also increase to provide the necessary security to protect these applications.

Hack

Interested in learning more about Atmel TPM? Head here. To read about this topic a bit further, feel free to browse through the Bits & Pieces archive.

This blog was contributed by Ronnie Thomas, Atmel Software Engineer. 

 

 

A closer look at Atmel’s Trusted Platform Module (TPM)

Last week, Bits & Pieces embarked on a deep dive of the ATECC108 solution, an elliptical curve cryptography (ECC) product. Today, we will be taking a closer look at Atmel’s Trusted Platform Module (TPM), which provides a strong hardware-based public key (RSA) for both personal computers and embedded processors on a single chip.

Essentially, the Trusted Platform Module can best be described as a complete turnkey system that integrates industry-leading Atmel AVR microcontroller architecture, Atmel EEPROM technology and Atmel security technology.

“Implementing version 1.2 of the Trusted Computing Group (TCG) specification for TPMs, the chip delivers intellectual property protection, system integrity, authentication and secure communications,” an Atmel engineering rep told Bits & Pieces.

“Plus, it should probably be noted that the Trusted Platform Module Embedded TWI Development Kit received a 2008 Readers Tech Choice Award from eg3, an independent news source devoted to electronic design.”

In addition, the TPM includes integrated, protected nonvolatile storage for cryptographic keys, secrets and authorization information. As expected, the platform also offers full TCG compliance, boasting a high-quality hardware random number generator, active shielding and a variety of tamper-detection and response circuits.

In terms of performance, the TPM’s cryptographic accelerator is capable of computing a 2048-bit RSA signature in 200ms, with the platform supporting SIRQ for interrupts and CLKRUN to permit clock stopping for power savings in mobile computers. The TPM is also equipped with two interfaces: a 33 MHz LPC interface for PC integration and a dual-wire interface for non-PC and embedded computing systems.

And last, but certainly not least, BIOS and hardware drivers are available for both Windows and Linux, along with third-party system and application software.

Interested in learning more about Atmel’s extensive and versatile security portfolio? Be sure to check out our official security page here .