3D printing technology is fast becoming mainstream in the medical world. Indeed, earlier this summer, researchers managed to design and print a 3D splint that saved the life of an infant born with severe tracheobronchomalacia – a serious birth defect that causes the airway to collapse. Melbourne scientists also took a big step towards the development of “grow your own” cartilage to treat cancers, osteoarthritis and traumatic injuries using 3D tech, while 3D printed orthopedic implants were successfully fitted in Peking’s University Third Hospital in Beijing.
And now doctors at the Kyoto University Graduate School of Medicine in Japan have successfully transplanted 3D printed bones into four patients with cervical spine (cervical) disc herniation. Following the transplants, symptoms such as gait disturbance and hand numbness improved.
The cost of making such artificial bones is only several thousand yen (1000 yen = 10 US dollars).
“Based on images of MRI and CT scan of patient’s neck, researchers sent the design file to a 3D printer,” a 3DERs.org writer explained. “Composed by thin layers of titanium powder the 3D printed bone fit perfectly to the cervical spine. After an extra chemical and heat treatment the 3D printed bone was transplanted into the patient’s neck.”
The cost of making such artificial bones, including part of a skull, femur and spine? Only several thousand yen per bone (1,000 yen = 10 US dollars).
As previously discussed on Bits & Pieces, the Maker Movement has used Atmel-powered 3D printers like MakerBot and RepRap for quite some time now, but it is quite clear that 3D printing recently entered a new and important stage in the medical space.