Tag Archives: TinyDuino

1:1 interview with TinyArcade creator Ken Burns


TinyArcade is the most adorable video game console you’ve ever seen.


Recently, we had the chance to sit down with TinyCircuits founder Ken Burns, who just wrapped up a successful Kickstarter campaign for the TinyArcade. Here’s what he had to say…

Ken Burns of Tiny Circuits

Josh Marinacci: Hi Ken. I’m one of the original Kickstarter backers of TinyCircuits and I love it. Could you tell us a little bit about TinyCircuits, why you created it, where it’s based?

Ken Burns: Thanks! TinyCircuits started as a side project while I was working at a contract engineering company. We would help other companies (from one person startups to Fortune 500 companies), develop electronic products, and prototyping was always a huge part of what we did. However, to create working prototypes usually involved creating a custom PCB (somewhat expensive and time consuming), or hobbling together a number of different development boards to create the proto, which was always ugly and usually too big.

So that’s what started the idea of a small modular system with a number of different sensors and options, and around the same time Arduino was becoming very popular so I decided to base it around that, which was the birth of the TinyDuino system. At the time it was just me in a spare bedroom of my house in Akron, Ohio, working on this and prototyping it up, but I showed it to a number of people and got a lot of great feedback, and decided to launch it on Kickstarter in the fall of 2012. The initial TinyDuino Kickstarter campaign did great, enough to convince me there was potential to create a business around it, so I left my job and committed to TinyCircuits full-time.

Three years later we’re still going strong, with a staff of 8 people and our own electronics design and manufacturing operation here in Akron, Ohio.

JM: One of our talented engineers recently built a Bluetooth wearable smartwatch using TinyCircuits. Have you seen a lot of adoption in wearables? What things do people build with it?

KB: That’s definitely a great project! Wearables is definitely something people use our stuff for a lot, it’s very small, compact, and easy to use, which makes it perfect for wearable applications. We launched the TinyScreen last year, which is a small OLED display that fits onto the TinyDuino and allows users to create add a very cool compact display to their projects.

Jewelry is one that a number of people have done, and some friends of ours are actually building out a 3D printed jewelry product based around our TinyScreen that should be launching early next year. Others are using our circuitry for wearable sensors, like for athletic and healthcare monitoring. And an eight-year old launched his own smart watch, the O Watchon Kickstarter to teach kids 3D printing and programing earlier this fall that is built around our stuff!

O-Watch-Smartwatch1

JM:Has anyone used your boards for a shipping product?

KB: A few small companies have used our products for very low volume items, but a few are designing products that integrate in the TinyScreen which will be higher volume. For low to mid volume items (one to a few hundred) it makes a lot of sense to buy products like ours to integrate with, since it saves the need to design a custom PCB and do the upfront engineering. After a certain volume it’s more cost effective to design a custom board, and we actually have helped a number of companies do that with our in-house design partner.

Josh: TinyArcade is absolutely the coolest thing ever. It’s a shame it won’t be ready in time for Christmas. Why did you decide to build this product, and why run it as a KickStarter instead of just selling it like your other boards?

Ken: Thanks! We would have loved to have it out by Christmas this year, but we needed to take our time over the summer to get the design right. The TinyArcade is really an outgrowth of the TinyScreen project we did last year, one of the things people really liked about it was that you could play games on it, and a number of our users started creating games for it, like Space Invaders, Outrun, Asteroids, etc.

In the spring we saw a really little arcade cabinet candy dispenser, and thought it would be cool to put a TinyScreen in it and play games, but the size wasn’t quite right. But the idea stuck with us, and we have a designer friend (Jason Bannister from mechanimal.com) design a 3D printed cabinet which came out looking incredible. We started showing this off at different shows, like Maker Faire Bay Area, and it was a huge hit, and people kept asking to buy it. So we decided to turn it into a product.

photo-original-1

We redesigned the TinyScreen to bring the cost down and way crank up the performance, and add things like audio, joysticks, and an SD expansion slot. The 3D printed cabinet is also fairly complex and something that needs a commercial printer to make (it can’t be printed on a Makerbot), so the prints are expensive. So we came up with a laser cut enclosure that could be made for much less but still look like a cabinet, so we could offer this at a low price.

We’ve had great luck on Kickstarter in the past, and one of the big reasons we did this again is so we can buy the components in bulk. We’re still a small startup and cash flow is always an issue, so using Kickstarter lets us buy some of the major components (like the OLED, joysticks, etc) in volume to keep the cost down. If we did it without Kickstarter, the price per unit would have to be a lot more.

JM: Where did you find those tiny joysticks?

KB: Those are super cute, aren’t they?! We used some PSP type joysticks in the past for our joystick board, but these were too big for this. These joysticks are made by CTS and actually available at places like DigiKey, and work amazingly well. They’re great for very precise analog movements. They are one of the more expensive components in the TinyArcade, but definitely worth it.

The top of the joystick is actually a knob that we designed ourselves and is a high-res 3D print, using a resin printer, so we can make it just like an old style arcade joystick.

JM: Does the TinyArcade have room for expansion? I’d love to make one connected to the internet through Bluetooth or Wi-Fi. Will you support those options?

KB: It certainly does! This is still a TinyDuino type product and maintains expansion capability, and there is room to add another board in the cabinet. Bluetooth and Wi-Wi are the two that we definitely consider the most likely, and since the platform is completely open source, it’s really up to the user’s imagination as to what they want to add. Based on how well the Kickstarter goes, and if there is community support, we’d love to see the ability for some multiplayer games over Bluetooth or Wi-Fi.

photo-main13

JM: With a Wi-Fi board, is it possible to do OTA updates?

KB: Right now we don’t have that capability, it really comes down to support in the bootloader. However we do support loading games and videos off a microSD card if it’s present, so it would definitely be possible to create a program to download files over Wi-i and save them to the SD card to use.

JM: What’s next for TinyCircuits? Any new products in the pipeline?

KB: We have a huge list of things in the pipeline that we would like to do, we actually have about 15 new expansion boards designed that should be hitting production early in 2016. One of the big push is into micro-robotics, so tiny servo drivers and motor drivers, new radio options, an ESP-based Wi-Fi board, many more sensors, and of course rolling out the TinyScreen+ board and the TinyZero processor board (basically the Arduino Zero, 32-bit ARM platform) which brings a new level of horsepower to the platform.

JM: Tell us a little more about the Kickstarter campaign and when do you expect it to ship?

KB The TinyArcade Kickstarter (successfully) ended on December 17th and we plan to start shipping in March 2016. The big reason for the delay is due to getting some of the key components in, like the raw OLEDs, this takes 8 – 12 weeks from our supplier, we plan to have the other items ready to go (the PCBs built, and the cases made), before then, so we can get shipping the moment they come in.

This interview originally appeared on PubNub’s blog

Tiny Arcade is the world’s smallest arcade cabinet


Tiny Arcade lets you relive the golden age of video games with an arcade cabinet that fits in the palm of your hand.  


The golden age of arcade video games spanned from the late 1970s to the mid-1990s. During that time period, these machines became fixtures in ice cream shops, bowling alleys and bars throughout the world. However, it wasn’t before long that this form of entertainment suffered a decrease in popularity with the advent of home-based gaming consoles.

9842743bc5439a54f0388eac8952e662_original

Truth be told, there’s nothing quite like the experience of playing a game in an arcade. And so, Ken Burns and the Tiny Circuits team decided to relive those glory days by shrinking a cabinet down to just a few inches tall.

The aptly named Tiny Arcade lets you play a number of retro-inspired games, each of which can be downloaded completely free online. Its creators hope to have over 20 classics available when the unit begins to ship, and being open source, you’ll be able to develop and release your own as well. What’s more, the palm-sized device allows you to convert any MP4 movie using a free utility to the TinyScreen format, put them on a microSD card, plug it in and then watch your video at 30 FPS with sound.

4696d7b95b54c29caa489e1478e2d86a_original

The gadget is based on the TinyScreen+ — an Arduino-compatible board that features an ATSAMD21G18A 32-bit MCU, built-in USB for charging and reprogramming, and an OLED screen all crammed into a package no larger than a quarter. Aside from that, there’s an analog joystick and two push buttons for playing the games, an integrated speaker for audio, a 140mAh lithium battery, and a microSD expansion slot.

“Even though the Tiny Arcade is built around the Arduino platform, don’t worry if you’re not a programmer. There is no need to download any special software or do any soldering with the Tiny Arcade, you can use it without any special knowledge,” Burns explains. “The Tiny Arcade can load games on the fly off a microSD card, a menu is provided at power up that shows a preview of all of the games available on the microSD card, choose one and it gets loaded in a second and you’re playing away. No need to reprogram the Tiny Arcade over USB.”

CUrtUcZWIAEvLUd

Tiny Arcade comes in two forms: either fully-assembled or in a DIY kit. The latter can be easily built in a matter of 10 minutes — no soldering or special tools necessary. The circuit boards snap together, while its acrylic or 3D-printed enclosure can be assembled like a jigsaw puzzle. There’s also a basswood case, which unlike the others, will need to be glued.

Those wishing to decorate their cabinets can do so with the two sheets of stickers included with each kit. Just peel them off and affix them to your Tiny Arcade, or print your own artwork for a more personal touch. You can even paint your own designs on the basswood model.

Ready for a retro arcade cabinet right in the palm of hand? Head over to Tiny Arcade’s Kickstarter campaign, where the Tiny Circuits crew is currently seeking $25,000. Delivery is expected to get underway in March 2016.

This necklace lets you play videos from its tiny screen


The Tiny Screen Necklace lets you watch movie clips, show off your artwork and more.


Chances are that you’ve watched a movie on the big screen, a small screen and even the screens of your handheld devices, but never before have you seen some scenes on such a tiny screen (try saying that five times fast) as the one on the wearable gadget devised by Margarita Benitez.

tinycircuits-4

The aptly named Tiny Screen Necklace is exactly what it sounds like: a miniature screen that plays videos. The Maker, who happens to also be a fashion professor at Kent State University, created the project as both a piece of jewelry and video art that aspires to open a wide range of endless possibilities. As a recent OZY article points out, this can be anything from an artist broadcasting their work, a filmmaker showing off his movie trailer or a social media star having her Instagrams on a loop.

The idea for the necklace first came about following conversations with TinyCircuits’ Ken Burns, the inventor of the small and stackable electronics platform that can be found at the heart of this wearable unit. If you recall from its original Kickstarter debut, the TinyScreen is only 1.02″ x 0.98″ with a 0.96” viewable area that features a 96×64 OLED display and 16-bit color depth. The device was built to be personalized and programmed by a clever user base, much like Benitez, which is all made possible thanks to the ATmega328P driven TinyDuino.

tinycircuits-8

What’s nice is that TinyScreen enables users to do everything from make a light blink to create a custom video game control console roughly the size of a quarter. Software processes the footage that is uploaded to the display embedded inside Benitez’s 3D-printed case. Typically, only a couple of lines of code are needed to get started.

In the future, the Maker hopes to not only sell her necklace, in both DIY and fully-assembled form, but open source its 3D-printable design as well. Benitez may even follow in the footsteps of TinyCircuits and launch a Kickstarter campaign of her own in the coming months. Until then, she remains optimistic about the future of wearable technology.  

“Maybe we’ll have clothing that can actually change patterns one day,” she tells OZY. “Media is always going to be everywhere, and if it can fit on your body, it will.”

Intrigued? Head over to the Maker’s official page here, and see the necklace in action below.

25 dev boards to help you get started on your next IoT project


A closer look at some of today’s most popular development boards to help you get started on your next IoT design.


With billions of everyday objects expected to become Internet-enabled over the next couple of years, Makers are continually seeking new ways to add connectivity to their designs. As a result, hobbyists and engineers are turning to a wide range of IoT development boards and platforms to better accelerate and ease the process.

Being at the heart of the IoT and all, we’ve decided to compile a list of just some of today’s most popular, Atmel powered ones that will surely help as you embark on your next prototype or project. (Keep in mind, there are countless others, with new ones popping up on the daily!)

SAM R21 Xplained Pro

SAM_D21_Xplained_PRO

The Atmel | SMART SAM R21 Xplained Pro is a hardware platform to evaluate the ATSAMR21G18A microcontroller. Supported by the Atmel Studio integrated development platform, the kit provides easy access to the features of the Atmel ATSAMR21G18A and explains how to integrate the device in a custom design. The Xplained Pro MCU series evaluation kits include an on-board Embedded Debugger, and no external tools are necessary to program or debug the ATSAMR21G18A. A great option for those developing an 802.15.4/ZigBee design.

Arduino Uno

d94148ecca27de89ddb740749db8d9cf.image.538x354

The Arduino Uno R3 is a microcontroller board based on the ATmega328. It has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. Simply connect it to a computer via a USB cable or power it with a AC-to-DC adapter or battery to get started.

Arduino Yún

ArduinoYunFront_2

The Arduino Yún is a microcontroller board based on the ATmega32U4 and the Atheros AR9331. The board comes with built-in Ethernet and Wi-Fi support, along with a USB-A port, microSD card slot, 20 digital input/output pins (of which seven can be used as PWM outputs and 12 as analog inputs), a 16 MHz crystal oscillator, a micro USB connection, an ICSP header, and three reset buttons. What’s more, Facebook’s Parse recently unveiled a new line of SDKs for connected devices with the first Arduino SDK targeted for the Yún.

Arduino Pro Mini

yhst-27389313707334_2252_119224678

Intended for semi-permanent installation in connected objects, the Arduino Pro Mini is based on the ATmega328. The board boasts 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, an on-board resonator, a reset button, and holes for mounting pin headers. A six-pin header can be connected to an FTDI cable or Sparkfun breakout board to provide USB power and communications.

Arduino Nano

ArduinoNanoFront_3_sm

The Arduino Nano is a small, breadboard-friendly board based on the ATmega328. The microcontroller has more or less the same functionality of the Arduino Duemilanove, but in a different package. It lacks a DC power jack, and works with a Mini-B USB cable instead of a standard one.

Pinoccio

pinoccio-scout-and-leadjbr

With an Atmel ATmega256RFR2 at its core, Pinoccio is a wireless, web-ready MCU packed with Wi-Fi, LiPo battery and a built-in radio. Each unit can communicate with one another using a mesh network, making them 14 times more efficient than standard Wi-Fi devices.

TinyDuino

Tiny

The TinyCircuits TinyDuino is an Arduino-compatible, ATmega328P based board in an ultra-compact package that provides Makers with the full power of an Uno in a size that’s less than a quarter.

UDOO

udoo_quad_product_top

UDOO is a multi-development platform solution for Android, Linux, Arduino and Google ADK 2012. The board, which is built upon an ARM Cortex-A9 CPU and Atmel | SMART SAM3X8E ARM Cortex-M3 CPU, is designed to provide a flexible environment that lets Makers explore the new frontiers of the Internet of Things and switch between Linux and Android in a matter of seconds, simply by replacing the MicroSD card and rebooting the system.

Libelium Waspmote

waspmote-big

Waspmote is an open-source, ATmega1281 based wireless sensor platform specially focused on the implementation of low consumption modes to enable the sensor nodes to be completely autonomous and battery powered, offering a variable lifetime between one and five years depending on the duty cycle and the radio used.

The AirBoard

AirBoard

The AirBoard is a thumb-sized, all-in-one MCU designed for ultra-fast prototyping on IoT projects. The open-source board is equipped with an ATmega328P and pre-loaded with the standard Arduino Fio bootloader. The wireless-friendly computer supports automatic over-the-air programming via Bluetooth, Wi-Fi or XBee, and can be controlled by smartphone or the web.

Tessel 2

Tessel_2_white

Tessel 2 is an affordable, accessible and robust development platform that lets Makers build connected hardware devices. The board packs built-in Wi-Fi, an Ethernet jack, a pair of USB ports, and a system that runs real Node.js/io.js. Meanwhile, it employs a processor/coprocessor architecture, combining an Atmel | SMART SAM D21 Cortex M0+ MCU to control I/O and a Mediatek MT7260n Wi-Fi router SoC to run user code, host USB devices and handle the network connections.

panStamps

panstamps

panStamps are small wireless modules programmable within the Arduino IDE. Each module contains an Atmega328P MCU and an RF interface, providing the necessary connectivity and processing power to create autonomous low-power wireless motes.

Flutter

banner_sm

Flutter is a $36 wireless Arduino with a half-mile range that lets users develop mesh networking protocols and connected devices in an efficient yet inexpensive manner. It’s perfect for robotics, consumer electronics, wireless sensor networks, and educational platforms. Flutter is packed with a powerful Atmel | SMART SAM3S Cortex-M3 processor, while an ATSHA204 crypto engine keeps it protected from digital intruders.

SODAQ

d2ef921ed72764467a51ccce596c92da_large

SODAQ is a LEGO-like rapid prototyping board driven by an ATmega328P that gives Makers and engineers the ability to easily connect a wide variety of sensors and devices to the Internet efficiently. With its solar powered data acquisition technology, data can be collected virtually anywhere and seamlessly transferred to the web.

IMUduino BTLE

hackster-imuduino-btle

Billed as the smallest Arduino Leonardo compatible clone, the IMUduino includes an ATmega32U4 at its core, as well as USB keyboard/mouse emulation, on-board Bluetooth LE, real-time orientation and motion sensing IMU, as well as a 10V max voltage regulator.

SparkFun RedBoard

12757-01

The SparkFun RedBoard combines the simplicity of the Arduino Uno’s Optiboot bootloader, the stability of the FTDI and the R3 shield compatibility of the latest Arduino Uno. The ATmega328 based board can be programmed over a USB Mini-B cable using the Arduino IDE.

XinoRF

raswik-xinorf

The XinoRF is an Arduino-compatible electronics development board with an onboard 2-way Ciseco SRF data radio, which supports over-the-air programming, features built-in wireless capabilities and is powered by an ATmega328P.

The Rascal

rascal-1.1

The Rascal is a small, AT91SAM9G20 powered computer that Makers can use to monitor and control their connected world remotely. In addition, it features its own web-based editor on-board, is compatible with most Arduino shields, and can be programmed in Python.

Microduino

Micro

Microduino is a quarter-sized Arduino-like board with an ATmega328P at its heart. With a unique UPin-27 pinout, Microduino’s plug-and-play modules can be easily stacked together to add functionalities.

Nanode

Nanode_Gateway_RF

Nanode is an open-source, Arduino-like board that is equipped with built-in Internet connectivity and based on an ATmega328P. The low-cost, upgradeable board is ideal for those looking to bring their IoT ideas to life.

OpenKontrol Gateway

IMG_4539__76835.1409204592.1280.1280

The OpenKontrol Gateway is an ATmega328 driven kit that enables communication between many common mediums and protocols. It is totally compatable with the Arduino IDE and supports Wi-Fi, low-power RF, Ethernet and Bluetooth. Beyond that, it can be configured with on-board SRAM, an SD card, a real-time clock, and a coin-cell battery and sports an FTDI programming port.

Arietta G25

Arietta

Arietta G25 is an uber-mini system-on-module powered by a SAM9G25 ARM9 processor. The 20mm x 50mm board, which was developed with the Maker community in mind, is ideal for low-power, embedded gadgets and other DIY IoT devices.

WIOT

2015-03-30t02-12-57-577z-wiot_4-png-855x570_q85_pad_rcrop

WIOT is an open-source, rechargeable development board for the Internet of Things built around the ATmega32U4. WIOT also boasts integrated Wi-Fi capabilities through an on-board ESP8266 module.

SmartEverything

chip1

SmartEverything is a dev board equipped with sensor options, communication interfaces and connection to the cloud for IoT designs. An Atmel | SMART ARM Cortex-M0+ based CPU USB host orchestrator chip manages traffic between peripherals, while an Atmel CryptoAuthentication device (ATSHA204) enables the implementation of a full security SHA-256 hash algorithm with message authentication code. The board utilizes the SIGFOX global network cellular connectivity solution to enable access to the IoT.

Apio

dongletop

Apio is an open-source IoT platform, which lets Makers and designers create their own smart systems and connected objects in a matter of minutes. It is comprised of two USB devices, the General and Dongle, both of which are based on an ATmega256RFR2 and ATmega16U2, along with a custom operating system and SDK.

LightBlue Bean

img_4643

The LightBlue Bean is a Bluetooth Low Energy, Arduino-compatible microcontroller. Using Bluetooth 4.0, it is wirelessly programmed, runs on a coin cell battery and is perfect for smartphone-controlled projects. Powered by an ATmega328P, the board features a three-axis accelerometer, a temperature sensor, an RGB LED, and includes iOS, OS X and Windows 8 support.

Build your own GPS pet tracker with TinyDuino

If you’re a pet owner, then you know that there is no worse feeling than losing your beloved animal. If you’re a pet owner, then you also may find yourself wondering from time to time as to what they do all day. Fortunately, this DIY GPS collar will not only allow you track the whereabouts of your cat remotely, but can log its GPS coordinates as well. Meaning, you can download its location whenever you feel like doing a some pet-snooping.

withtracker11

Recently published on MAKE Magazine, Ken Burns shared his GPS cat-tracking collar, built around the ATmega328P based TinyDuino platform. The system is powered by a small, lightweight battery and equipped with a fairly “power-hungry” GPS and microSD card, each of which are enclosed inside an old Tic Tac container.

According to Burns, a small slot was cut into the case in order to allow the cat collar to slide through and the GPS module to sit on the back of a cat’s neck, optimizing antenna reception.

step2b-e1388801225829

In terms of software, the Maker notes that he used an Arduino sketch running on the TinyDuino, which captured the raw data from the device and writes it to a text file on the microSD card.

gps_cat_tracker_wiring_diagram

 

“Pop out the microSD, put it in your computer, and you can open up the file in a program like Google Earth and see exactly where your cat was during the day, complete with timestamps.”

Do you have a furry friend at home who could benefit from this DIY collar? You can find the Maker’s step-by-step tutorial on MAKE here.