Tag Archives: tinyAVR microcontrollers

A tinyAVR USB volume knob

A Maker by the name of Rupert has designed a tinyAVR-powered USB volume knob based on Adafruit’s popular Trinket (Atmel ATtiny85) platform.

“After purchasing a Trinket to experiment with and Adafruit having a great mentality for Open Source Hardware, I decided to modify my own ATtiny85 volume control PCB to make it compatible with the Trinket’s 5Volt firmware (flash_me_hv_5volt.hex)! (which is Arduino compatible),” Rupert explained in a recent blog post. “This gives access to direct programming without the need for a separate programmer from the Arduino IDE. Its also nice to support the hard work done at Adafruit by purchasing one of their Trinkets.”

As the HackADay crew notes, an awesome looking RGB LED ring powered by Adafruit’s Neopixel was ultimately added to the design, albeit at the expense of a “mute” control.

“The PCB Rupert fabbed is pretty well suited for being manufactured one-sided,” wrote HackADay’s Brian Benchoff. “If you’ve ever wanted an awesome volume knob for your computer, all the files are available from Rupert‘s blog here.”

In addition to creating the above-mentioned tinyAVR USB volume knob, Rupert is reportedly working to load Adafruit’s Trinket bootloader on Atmel’s ATtiny84, an MCU with a total of 8 analog pins.

As we’ve previously discussed on Bits & Pieces, Adafruit’s popular Trinket can best be described as a tiny microcontroller board built around Atmel’s versatile ATtiny85.

“We wanted to design a microcontroller board that was small enough to fit into any project – and low cost enough to use without hesitation,” Adafruit’s Limor Fried (aka LadyAda) explained.

“[It is] perfect for when you don’t want to give up your expensive dev-board and you aren’t willing to take apart the project you worked so hard to design.”

Fried describes the Attiny85 as a “fun processor,” because despite being so small, it boasts 8K of flash and 5 I/O pins – including analog inputs and PWM ‘analog’ outputs.

“We designed a USB bootloader so you can plug it into any computer and reprogram it over a USB port just like an Arduino,” Fried continued. “In fact we even made some simple modifications to the Arduino IDE so that it works like a mini-Arduino board. You can’t stack a big shield on it but for many small and simple projects the Trinket will be your go-to platform.”

There are currently two versions of the Trinket: 3V and 5V. According to LadyAda, both work the same but have different operating logic voltages.

“Use the 3V one to interface with sensors and devices that need 3V logic, or when you want to power it off of a LiPo battery. The 3V version should only run at 8 MHz. Use the 5V one for sensors and components that can use or require 5V logic, [as] the 5V can run at 8 MHz or at 16MHz by setting the software-set clock frequency,” she added.

Atmel’s tinyAVR is a Maker favorite

Earlier this week, Atmel expanded its low-power 8-bit tinyAVR family with the addition of the ATtiny441 and ATtiny841. According to Atmel’s Director of Flash-based MCUs Ingar Fredriksen, the 8-bit AVR microcontrollers are ideal for cost-effective consumer applications and a wide range of Maker projects.

Indeed, the new ATtiny 441/841 MCUs boast higher system integration with intuitive tools and peripherals to help facilitate optimized performance with lower power consumption. In addition, the ultra-low power 14-pin tinyAVR MCUs deliver enhanced analog and communication capabilities for an overall lower system cost in a smaller package.

As noted above, Atmel’s ATtiny MCU lineup is routinely tapped by both DIY Makers and professional engineers to power a wide range of projects. To be sure, quite a number of devices and platforms built around Atmel’s ATtiny have surfaced on Bits & Pieces in recent months including:

* The PC knock sensor – This project allows users to turn their PCs on and off with a simple knock sensor. The entire platform, costing the Maker a grand total of $10, is built around Atmel’s ATtiny45 MCU which emulates a PS/2 device.

* Halloween knock box – Powered by Atmel’s versatile ATtiny45 (or 85) microcontroller (MCU), the Halloween Knock Box box is fairly easy to put together. Additional key components include a piezo element (amplifier) for the knock sensor and a motor to provide the knocking feedback.

* Twinkling jack-o-lanterns – This project uses very few components: four slightly depleted AA batteries, a super bright LED, 680 ohm resistor and a little custom code set on an 8-pin Atmel ATtiny13.

* ATtiny85 ISP! – The open source ATtiny85 ISP! can probably best be described as a breakout prototyping board for Atmel’s ATtiny85/45/25 lineup. The ATtiny85 ISP! allows Makers to take advantage of the ATtiny85 chip’s potential, while using the familiar Arduino IDE and harnessing support from the Arduino community.

* Cuboino (Digital Cuboro) – This version of Cuboro is a tangible, digital extension of the classic marble puzzle game. Designed by Felix Heibeck of the University of Bremen, Cuboino is powered by Atmel’s versatile ATtiny85 MCU.

* ATtiny logic analyzer – The ATtiny2313-based logic analyzer is capable of capturing at 50+ kHz, more than enough for a PS/2 port. This project combines an Atmel MCU, breadboard and FTDI for unlimited-length logic capturing with a PC.

2D-Lux smart LED disk (SLEDD) – NliteN’s 2D-Lux Smart LED Disk (SLEDD) is a dimmable 60W-incandescent-replacement LED smart “bulb” equipped with an Atmel AVR microcontroller (ATtiny85), USB interface and hardware-expansion pins.

Digital tic-tac-toe – Powered by the ATtiny85, this modern implementation of the classic game boasts an AI mechanism capable of making defending or winning moves against a human opponent.

Long-term LED blinker – ATtiny10 runs an LED blinker for at least 6 months.

Adafruit’Gemma & Trinket – Uber-mini microcontroller boards built around the ATtiny85.

Pressure sensitive floor – This ActiveFloor comprises a total of twenty-one 2′x4′ tiles, each one including 8 pressure-sensitive resistors and an ATtiny84-based platform.

Chiptunes player – A tiny chip tunes player built around Atmel’s Attiny9.

Duo Mini computer – A DIY computer powered by the ATtiny84.

Nixie clock – This slick retro Nixie Clock is equipped with an ATtiny1634 MCU.

As previously discussed on Bits & Pieces, all tinyAVRs are based on the same architecture and compatible with other AVR devices. Features like integrated ADC, EEPROM memory and brownout detectors allow users to design applications without adding external components. The tinyAVR is also equipped with flash memory and on-chip debug for fast, secure, cost-effective in-circuit upgrades.

“The tinyAVR offers an advanced combination of miniaturization, processing power, analog performance and system-level integration. Simply put, the tinyAVR is the most compact device in the AVR family and the only device capable of operating at just 0.7V. And there’s nothing really tiny about that,” an Atmel engineer explained. “Plus, tinyAVR designs can be coupled with Atmel’s CryptoAuthentication tech for an extra level of security. The AVR CPU gives the tinyAVR devices the same high performance as our larger AVR devices. Flexible and versatile, they feature high code efficiency that lets them fit a broad range of applications.”

As expected, tinyAVR offers a high level of integration, with each pin boasting multiple uses as I/O, ADC and PWM. To be sure, even the reset pin can be reconfigured as an I/O pin. Oh, and yes, the tinyAVR also features a Universal Serial Interface (USI) which can be used as SPI, UART or TWI.

On the power side, where most microcontrollers require 1.8V or more to operate, the tinyAVR boosts the voltage from a single AA or AAA battery into a stable 3V supply to power an entire application. So if you do use tinyAVR tech in your next maker, hacked, modded or industrial project, be sure to check out our recently launched AVR Hero Contest! In the meantime, additional information about Atmel’s extensive tinyAVR lineup can be be found here.

Atmel debuts new low-power 8-bit tinyAVR MCUs

Atmel has expanded its low-power 8-bit tinyAVR family with the addition of the ATtiny441 and ATtiny841. As we’ve previously discussed on Bits & Pieces, the 8-bit AVR MCUs are ideal for cost-effective consumer applications such as computer accessories, thermostats, personal health accessories and a wide range of Maker projects.

atmelnewattiny

According to Atmel’s Director of Flash-based MCUs Ingar Fredriksen, the new ATtiny 441/841 MCUs boast higher system integration with intuitive tools and peripherals to help facilitate optimized performance with lower power consumption. Indeed, the ultra-low power 14-pin tinyAVR MCUs deliver enhanced analog and communication capabilities for an overall lower system cost in a smaller package.

“Atmel has been the 8-bit MCU leader for more than a decade and continues to think beyond the core, enabling our customers to differentiate their end products,” said Fredriksen. “Our AVRs have been popular since its inception and continue to be the MCU of choice both for professional engineers in consumer and industrial applications and among our 300,000 members in the AVR Freaks community consisting of engineers, hobbyists and Makers.”

As Fredriksen notes, the ATtiny441/841 devices are powerful MCUs packaged in a small form factor. More specifically, the new ATtiny441 and ATtiny841 MCUs feature an uber-mini 3×3 QFN package and 4 and 8KB of Flash memory, respectively.

“The new devices offer enhanced analog performance, including an ADC with calibrated multilevel internal analog reference, with 12 ADC channels on a 14-pin device, two independent USARTs with wake-up from power down without data loss, SPI interface and an I2C slave interface for enhanced communication capabilities,” Fredriksen continued. “In addition, the devices feature flexible clocking options, including a ± 2% internal oscillator with fast wake-up, which allows the UARTs to communicate without the need of an external crystal and wake-up from sleep without data loss.”

As expected, the ATtiny441/841 devices are fully supported by Atmel Studio 6, the integrated development platform (IDP) for developing and debugging Atmel ARM Cortex-M and Atmel AVR MCU-based applications. Simply put, Atmel Studio 6 IDP offers devs a seamless, easy-to-use environment to write, build, simulate, program and debug applications written in C/C++ or assembly code using the integrated GCC compiler and AVR assembler. AS6 also provides easy access to the online Atmel Gallery apps store and Atmel Spaces, a cloud-based collaborative development workspace allowing the designer to host software and hardware projects targeting Atmel MCUs.

To help accelerate devs and Makers accelerate ATtiny441/841 AVR MCU designs, the new devices are supported by Atmel’s AVR Dragon Board which can be snapped up at the Atmel Online Store for USD $49. The ATtiny841 and ATtiny441 are also supported by the STK600, AVRONE, JTAGICE mkII, JTAGICE3 and AVRISPmkII development tools.

The ATtiny441/841 is currently available in mass production, with samples that can be ordered here. Readers who are Maker interested in testing their creativity with AVR MCUs (including the new ATtiny441/841 AVR MCUs) may want to check out Atmel’s very own Master Maker Design Contest here.

First desktop wire bender hits Kickstarter

The first desktop CNC wire bender has hit Kickstarter with an Atmel MCU (ATxmega192/TinyG) under the hood. Created by Pensa Labs, the DIWire transforms drawn curves into bent wire that can be assembled to make just about anything.

“To date, desktop manufacturing has focused on 3D printers outputting plastic volumes and laser cutters cutting 2D planes. However, nothing exists that converts lines into bent rod, wire or tubular forms quickly, accurately, and repeatedly,” the Pensa Labs crew wrote in a recent Kickstarter post. “The DIWire can bend various metals and plastics, allowing for the output to be used as the final product. Additionally, the build volume is limited only by the length of the wire.”

Indeed, by being transportable, accessible and affordable, the DIWire fills the market gap between time-consuming hand-bending and large scale, mass production CNC wire bending, which is often too costly for custom, short-run productions.

This significantly changes the dynamics of STEM education, as well as local, mass customized, prototype and just-in-time manufacturing for industries ranging from aerospace, automotive, medical, to consumer products.

So what can DIWire be used to create? Specific examples listed on Kickstarter include antennas, robotics, architecture models, design prototypes, art, furniture, jewelry, small crafts, surgical implants, orthodonture, puppetry, lighting, stage sets and signage.

Interested in learning more about the Atmel-powered DIWire? You can check out the project’s official Kickstarter page here.

3D printing market worth $8.41 billion by 2020

Analysts at MarketsandMarkets have confirmed that the lucrative 3D printing market is projected to grow at a CAGR of 23% from 2013 to 2020, ultimately reaching $8.41 billion in 2020. The rapid growth is attributed to a wide range of diverse factors including innovative and advanced technologies, customized products, government funding, a wide unexploited app space and rapid development of products.

Currently, the major companies operating in this market are 3D Systems (U.S.), Stratasys (U.S.), Arcam AB (Sweden) and Exone (U.S.). As of 2013, the United States holds the largest revenue share, followed closely by Europe in 3D printers materials and related services. However, Europe is expected to surpass America in terms of 3D printing market revenue by 2020.

“The foremost factors accountable for the expansion of 3D printing market include new and improved 3D printing technologies, a wide range of materials government funding, broad application scope and increased awareness regarding the benefits of 3D printing over traditional techniques (injection molding and CNC machining),” a MarketsandMarkets rep explained. “However, APAC is the fastest growing and most promising market for 3D printing due to high industrial growth, technological awareness, supportive government policies and financial investment by the governments in R&D.”

Image Credit: RepRap.org

As we’ve previously discussed on Bits & Pieces, the DIY Maker Movement has been using Atmel-powered 3D printers like MakerBot and RepRap for some time now. However, 3D printing recently entered a new and important stage in a number of spaces including the medical spherearchitectural arenascience lab and even on the battlefield.

Indeed, the meteoric rise of 3D printing has paved the way for a new generation of Internet entrepreneurs, Makers and do-it-yourself (DIY) manufacturers. So it comes as little surprise that the lucrative 3D printing industry is on track to be worth a staggering $3 billion by 2016 – and $8.41 billion by 2020.