Tag Archives: tag2

Are conductive temporary tattoos the future of wearables?


Time to get skintimate with Tech Tats.


Although there’s already an abundance of activity monitoring wearables on the market today, mobile development studio Chaotic Moon is exploring a new frontier in the industry. The Austin-based firm has decided to go beyond just a fitness tracker with a collection of biosensors that affix to your skin like a temporary tattoo.

Tattoo2

In one of its uses cases, the aptly named Tech Tats consist of an ATiny85 that stores and receives body data from sensors via Bare Conductive’s Electric Paint. This combination of basic components and conductive ink come together to create a circuit that essentially turns you in a cyborg. There’s even some room for an ambient light sensor that illuminates LEDs whenever it’s dark. And unlike most wellness devices, the temporary tattoo can be worn in other places than merely the wrist — all while remaining unnoticeable. 

Tech Tats boast various applications, with health and mobile payments being two of them. For one, the biosensors can be stuck on the skin once a year instead of having to go for an annual physical, and will keep tabs on all of your vitals that the doctor would normally check for. The information can then be sent to the doctor, who will notify you only if there is an issue. This can also come in handy following surgery to better keep tabs on a patient’s progress.

According to Chaotic Moon, the temporary tattoo can read body temperature as well as sense if someone is stressed based on sweat, heart rate and hydration levels. Throw on a BLE module and data can be wirelessly transferred to an accompanying smartphone app, or uploaded through location-based low-frequency mesh networks.

Tattoo1

Not only the medical field, but Tech Tats can find a home in banking industry, too. Instead of carrying a wallet around with all of your most personal information in your back pocket, these conductive patches can be employed to authorize payments in similar fashion to Apple Pay.

Aside from that, Chaotic Moon’s bio-wearable can even play a role in the military setting by detecting poisons in the air, pathogens in a soldier’s body or identifying when they’re injured or stressed.

Could temporary tattoos be the future of wearable technology? Time will only tell. But until then, you can watch Chaotic Moon explain their innovation in the video below!

 

maXTouch U family opens up a world of possibilities for next-gen devices


This new controller family will make touchscreen devices less frustrating and more enjoyable to use.


It’s safe to say that touchscreens have surely come a long way since Dr. Samuel C.Hurst at the University of Kentucky debuted the first electronic touch interface back in 1971. Despite their ubiquity today in just about every device, the technology doesn’t seem to always work as well as it should given recent advancements. As VentureBeat’s Dean Takahashi points out, displays remain frustratingly unresponsive to finger taps, consume a lot of power, and quite frankly, are still pretty bulky — until now.

Chips

That’s because Atmel has launched a next generation of sensor chips that will pave the way to much better (and more delightful) tactile experiences for gadgets ranging from 1.2” smartwatch screens to 10.1” tablet displays. Following in the footsteps of its older siblings, the new maXTouch U family will enable optimal performance, power consumption leveraging picoPower technology, and of course, thinner screens.

More apparent than ever before, the use of touch-enabled machinery has exploded over the past five years. As a result, there has been an ever-growing need to develop touchscreens with extremely high touch performance, ultra-low power and more sophisticated industrial designs with thinner screens. Not to mention, the anticipated surge in wearables has also created a demand for extremely small touchscreen controllers with ultra-low power consumption in tiny packaging. Luckily, this is now all possible thanks to the maXTouch U family which crams pure awesomeness in a 2.5-millimeter by 2.6-millimeter space (WLCSP).

Flawless

Designers can now build extremely innovative thin and flexible touchscreen designs using single layer, on-cell and hybrid in-cell touchscreens with intelligent wake-up gestures and buttons. What this means is that, the technology can support entry-level smartphones, slick wearable gizmos, super tablets and everything in between on a full range of stack-ups.

Among the most notable features of the U include low power modes down to 10µW in deep sleep for wearables such as smartwatches, active stylus support, 1.0-millimeter passive stylus support (so users can write with things like pencils on a touchscreen), as well as up to a 20-millimeter hover distance (so that a user can answer their phone call with a wet hand). What’s more, the touch controllers can sense water and reject it as a touch action, and works with multiple fingers — even if someone is wearing gloves.

Binay Bajaj, Atmel Senior Director of Touch Marketing, explains that the recently-revelaed series provides all the necessary building blocks for futuristic mobile gadgetry. The chips are available in samples today, while production versions will be ready in the third and fourth quarters.

“Our expertise in ultra-low power MCUs and innovative touch engineering have allowed us to bring a superior series of devices to market that is truly an innovative collection to drive next-generation touchscreens. We are a leading provider of touchscreen devices to a variety of markets adopting capacitive touchscreens,” Bajaj adds.

Let’s take a closer look at the six new maXTouch U devices:

  • mXT735U is the perfect device for the entry level tablet delivering robust moisture support and excellent noise immunity for touchscreens up to 10.1″.
  • mXT640U supports touchscreens up to 6 inches. This device supports 1mm passive stylus support and thin stack support including 0.4mm cover lens for GFF stack, up to 25mm hover detection and moisture resistance.
  • mXT416U delivers extremely high touch performance including 2.5mm passive stylus, excellent moisture support, noise immunity and up to 30mm large finger touch detection.
  • mXT336U is targeted for mid-range smartphone applications, delivering a perfect balance between performance and form factor.
  • mXT308U is geared towards low-end smartphone applications emphasizing simplicity and robustness.
  • mXT144U is designed specifically for wearable applications. The mXT144U features picoPower with 10uW in deep sleep mode and is the smallest hybrid sensing touchscreen controller packaged in a 2.5mm x 2.6mm WLCSP. This device is the ideal solution for today and tomorrow’s wearable devices.

Introducing the new Atmel | SMART SAM C family


Atmel unveils an innovative 5V Cortex-M0+ MCU series with integrated peripheral touch controller.


Say hello to the Atmel | SMART SAM C family, the world’s first full 5V ARM Cortex-M0+-based MCU series with an integrated peripheral touch controller (PTC). The newest batch of MCUs innovatively combines 5V, DMA performance and a PTC with excellent moisture tolerance. Beyond that, the devices integrate advanced analog capability and offer EMI and ESD protection, making them ideal for the rapidly expanding smart appliance and industrial markets.

SAMC_launch_980x352-1

Atmel | SMART microcontrollers with PTC are currently in mass production at leading appliance manufacturers worldwide. By adding full 5V functionality on an ARM Cortex M0+ based core, along with upcoming support for the IEC 60730 Class B Safety Library, the SAM C lineup — including the SAM C20 and CAM C21 — is the perfect solution for partnering with industrial and white goods companies to power next-generation applications for the burgeoning Internet of Things.

Leveraging over two decades of MCU success, the latest series incorporates Atmel’s proprietary smart peripherals and Event System, not to mention are also pin and code-compatible to the SAM D and SAM L families. The SAM C is fully supported by Atmel’s free integrated development environment Atmel Studio and program examples and drivers for all peripherals are available through the Atmel Software Framework.

“Atmel leverages its leadership position in both MCU and touch with the new SAM C series,” explained Reza Kazerounian, Atmel SVP and GM, Microcontroller Business Unit. “The SAM C series uniquely combines support for 5V on a Cortex-M0+ based MCU with an integrated PTC, bringing an industry-first product to market for next-generation industrial and appliance applications.”

Among the notable features of the SAM C:

  • Expands the ARM Cortex-M0+ based MCU with hardware divide and square root accelerator at 48MHz
  • Large memories with SRAM up to 32KB and embedded Flash up to 256KB
  • Supports 2.7V to 5.5V operating voltage
  • Integrates the Atmel QTouch Peripheral Touch Controller
  • Incorporates Atmel’s proprietary DMA with SleepWalking, Event System and SERCOM
  • Dual 12-bit ADCs and a 16-bit Sigma Delta ADC
  • Dual CAN 2.0 with FD support

To help accelerate a designer’s development, the SAM C21 Xplained Pro is now selling for just $39. These boards include an embedded debugger and programmer and have a wide range of compatible extensions units. Standalone programmer debugger solutions supporting the SAM C family are also available from both Atmel and third parties.

Video Diary: A look back at Embedded World 2015


Weren’t able to join us in Nuremberg? 


With another Embedded World in the books, here’s a look back at some of Atmel’s latest smart and securely connected solutions that are ready to power next-generation Internet of Things (IoT) applications.

Andreas von Hofen shows off the new automotive grade ARM Cortex-M0+-based SAM DA1. The recently-revealed family of MCUs feature an integrated peripheral touch controller (PTC) for capacitive touch applications.

Geir Kjosavik demonstrates a QTouch-based water level sensing application that highlights its advanced HMI and sensing capabilities. Notable uses for this solution include automotive liquid containers and coffee machines.

Dr. Atta Römer explores the latest advancements in phase measurement by exhibiting various localization applications based on 802.15.4 transceivers. Among those examples is Agilion, who showed off its latest e-ink display ID badge based on an Atmel transceiver that is capable of tracking employees in emergency situations, transmitting data and managing access.

Ingolf Leidert addresses Atmel’s newest development kit for ZigBee Light Link solutions using a pair of SAMR21ZLL-EK boards. In this particular demonstration, one board served as a ZigBee LightLink remote, while the other acted as a light.

Controllino is an open-source programmable logic controller (PLC) built around ATmega328 and ATmega2560 microcontrollers. The startup’s CEO Marco Riedesser went 1:1 with Artie Beavis to delve deeper into the Arduino-compatible PLC that enables Makers and designers to produce and control a wide-range of IoT projects, ranging from industrial to home automation applications.

Lionel Perdigon introduces the newest series in the Atmel | SMART ARM Cortex-M portfolio, the SAM E70 and the SAM S70. These Cortex-M7-based MCUs are ideal for connectivity and general purpose industrial applications, while the auto-grade SAM V70 and SAM V71 are perfectly suited for in-vehicle infotainment, audio amplifiers, telematics and head unit control.

The Internet of Things requires a system-level solution encompassing the whole system, from the smallest edge/sensing node devices to the cloud. That is why Atmel has partnered with best-in-class cloud partners — including PubNub, Proximetry and Arrayent — that can support a variety of applications for both Tier-1 OEMs and smaller companies. As Ramzi Al-Harayeri explains Atmel has integrated the partners’ technologies into Atmel’s cloud solutions framework adding the cloud platform functionality seamlessly to all of the company’s wireless MCU offerings.

Thomas Wenzel showcases the latest version of Atmel’s connected car solution, AvantCar 2.0. Focusing on user requirements for next-generation vehicles, this futuristic center console concept delivers an advanced human machine interface (HMI). Beyond that, the new centerstack includes curved touchscreens highlighting HMI in upcoming automobiles using Atmel technologies including XSense, maXTouch, AVR MCUs and local interconnect network.

Bosch Sensortec’s Fabio Governale and Divya Thukkaram unveil the latest extension board for the incredibly-popular Xplained platform. Featuring a BNO055 intelligent 9-axis absolute orientation sensor, the next-gen device connects directly to Atmel’s Xplained board making it ideal for prototyping projects for the Internet of Things, wearables and gaming markets, as well as for applications like personal health and fitness, indoor navigation, and others requiring context awareness and augmented reality for a more immersive experience.

David Lindstrom of Percepio takes us through some of the innovative features of Atmel Studio 6.2, including the MTB support available on the new SAM D21 board. As the demo reveals, it’s super easy to get started, enable Trace View and run the system using the all-in-one collaborative environment for embedded design.

Sankaranarayanan Kitchiah delves deeper into Atmel’s BLDC motor control development platform using a SAM D21 MCU and the Atmel Data Visualizer (ADV) application.

Arduino and Adafruit unveil the Arduino Gemma

During his Maker Faire Rome presentation, Arduino Co-Founder Massimo Banzi offered attendees a preview of the company’s new collaboration with Adafruit — the Arduino Gemma, a tiny wearable MCU board packed in a 1-inch (27mm) diameter package.

ArduinoGemma

Similar to the original Adafruit Gemma, the mini yet powerful wearable platform board is powered by the versatile ATtiny85. The board will be default-supported in the Arduino IDE, equipped with an on/off switch and a microUSB connector. Since it is programmable with the Arduino IDE over USB, all Makers will have the ability to easily create wearable projects with all the advantages of being part of the Arduino family.

BzGFaEdIYAA6jnK.jpg-large

“We wanted to design a microcontroller board that was small enough to fit into any project, and low cost enough to use without hesitation,” Adafruit’s Limor Fried (aka LadyAda) explained in a blog post last September. “Gemma is perfect for when you don’t want to give up your Flora and aren’t willing to take apart the project you worked so hard to design. It’s our lowest-cost sewable controller.”

Ideal for small and simple projects sewn with conductive thread, the [tinyAVR based] Arduino Gemma fits the needs of nearly every entry-level wearable creations — ranging from reading sensors to driving addressable LED pixels.

To better visualize just how small we are talking, look at this image from an earlier version of the Adafruit Gemma.

flora_1222scale_LRG

“The ATtiny85 is a great processor because despite being so small, it has 8K of flash and 5 I/O pins, including analog inputs and PWM ‘analog’ outputs. It was designed with a USB bootloader so you can plug it into any computer and reprogram it over a USB port (it uses 2 of the 5 I/O pins, leaving you with 3),” Arduino noted in its announcement.

In addition to ATtiny85 MCU, other key hardware specs include:

  • Operating Voltage: 3.3V
  • Input Voltage (recommended): 4-16V via battery port
  • Input Voltage (limits): 3-18V
  • Digital I/O Pins: 3
  • PWM Channels: 2
  • Analog Input Channels: 1
  • DC Current per I/O Pin: 40 mA
  • DC Current for 3.3V Pin: 150 mA
  • Flash Memory: 8 KB (ATtiny85) of which 2.5 KB used by bootloader
  • SRAM: 0.5 KB (ATtiny85)
  • EEPROM: 0.5 KB (ATtiny85)
  • Clock Speed: 8 MHz
  • MicroUSB for USB Bootloader
  • JST 2-PH for external battery

For those seeking to use an Arduino Gemma in their next DIY wearable project, the board will be available for purchase on the Arduino Store and Adafruit Industries beginning late Fall 2014.

Atmel strengthens its IoT leadership

Atmel today announced a definitive agreement to acquire Newport Media, Inc., a leading provider of high performance low power Wi-Fi and Bluetooth solutions, that will enable Atmel to offer designers and Makers the industry’s most complete wireless portfolio of smart, connected devices for the Internet of Things (IoT).

“This acquisition immediately adds 802.11n Wi-Fi and Bluetooth to our offerings and will accelerate our introduction of low-energy Bluetooth products,” explains Atmel CEO Steve Laub. “Combined with our existing Wi-Fi and Zigbee solutions and industry leading microcontroller portfolio, Atmel is positioned for substantial growth in the Internet of Things marketplace.”

atmel_SAMW23_HomePage_980x352

Expanding Atmel’s already broad SmartConnect™ wireless portfolio, NMI’s 802.11n Wi-Fi and Bluetooth certified products offer innovative, highly integrated solutions that will accelerate seamless communication and connectivity for the Internet of Things. NMI’s products combined with Atmel’s ultra-low power microcontrollers (MCUs) are designed for a broad spectrum of applications including industrial, home and building automation, and consumer products requiring smaller form factors and longer battery life.

Analysts at IDC recently confirmed the arrival of a connected future as the worldwide market for IoT solutions is expected to increase from $1.9 trillion in 2013 to a staggering $7.1 trillion in 2020.

As we’ve previously discussed on Bits & Pieces, Atmel is well-positioned to benefit from the rapidly evolving Internet of Things. According to Oppenheimer & Co. analyst Andrew Uerkwitz, Atmel is one of a handful of companies that makes MCUs that will increasingly be in demand, with today’s announcement further bolstering its leadership position in the IoT market.

Interested in learning more about the IoT? You’ll want to check out our extensive Bits & Pieces IoT article archive here.

A closer look at Atmel’s smart energy platform (Part 2)

In part one of this series, Bits & Pieces introduced Atmel’s recently launched SAM4C series of products, with a spotlight on the SAM4C16 and SAM4C8. Designed for smart energy applications, these system-on-chip solutions are built around two high performance 32-bit ARM Cortex-M4 RISC processors. The devices operate at a maximum speed of 100 MHz and feature up to 2Mbyte of embedded Flash, 304 Kbytes of SRAM and on-chip cache for each core.

atmelsmartenergy3cropped

The dual ARM Cortex-M4 architecture facilitates the integration of various layers, including application, communications and metrology functions in a single device. It also offers options for integrated software metrology or external hardware metrology AFE (analog front end), as well as an integrated or an external power-line carrier (PLC) physical layer solution. Essentially, this is a modular approach that is sure to meet various design needs.

In part two of this series, we’ll be taking a closer look at the software and hardware metrology of the SAM4Cx. Specifically, Atmel’s software metrology library provides a comprehensive level of performance, scalability and flexibility which supports the integration of proprietary advanced metrology and signal processing algorithms.

“Atmel’s standard library enables residential, commercial, and industrial meter design up to class 0.2 accuracy, dynamic range of 3000:1, and are compliant with IEC 62052-11, 62053-22/23, ANSI C12.1, C12.20 and MID,” an Atmel engineering rep told Bits & Pieces.

atsense301

“Meanwhile, software metrology front-end electronics is comprised of ATSENSE-301 and ATSENSE-101 multi-channel (up to 7) simultaneously-sampled Sigma-Delta A/D converters at 16sps, high precision voltage reference with up to 10 ppm/°C temperature stability, programmable current signal amplification, temperature sensor and SPI interface.”

Additional SAM4Cx features include:

  • Poly-phase energy metering analog front end for Atmel’s MCUs and Metrology library.
  • Compliant with Class 0.2 standards (ANSI C12.20-2002 and IEC 62053-22).
  • Up to 7 Sigma Delta ADC measurement channels: 3 Voltages, 4 Currents, 102 dB Dynamic Range.
  • Current Channels with Pre-Gain (x1, x2, x4, x8).
  • Supports shunt, current transformer and Rogowsky coils.
  • 3.0V to 3.6V operation, Ultra Low Power: < 22 mW typ (device fully active @ 3.3V).
  • Precision voltage reference.
  • Temperature drift: 50ppm typ (ATSENSE-301)and 10ppm typ (ATSENSE-301H).
  • Factory measured temperature drift and die temperature sensor to perform software correction.
  • 8 MHz Serial Peripheral Interface (SPI) compatible mode 1 (8-bit) for ADC data and AFE controls.
  • Interrupt Output Line signaling ADCs’ end of conversion, under-run and over-run.
  • Package: 32-lead TQFP, 7 x 7 x 1.4 mm.

atmelmetrology

In terms of hardware metrology (AFE), Atmel offers out-of-the-box solutions for basic metering that supports up to class 0.2 accuracy; exceeds IEC and ANSI standards and offers best-in-class temperature drift.

Additional specs include:

  • A dynamic range up to 6000:1
  • Optimizes performance
  • Reduces OEM’s cost of manufacturing
  • Great fit with SAM4L
  • picoPower Technology
  • Active mode @ 90μA/MHz
  • Full RAM retention @1.5μA
  • SleepWalking
  • 4×40 Segment LCD Controller
  • Hardware Crypto block

Interested in learning more about Atmel’s new comprehensive smart energy platform? Be sure to check out our official product page here, part one of our deep dive here and part three here.

%d bloggers like this: