Tag Archives: SoC architecture

Atmel and IoT and Crypto, oh my!

One of the companies that is best positioned to supply components into the Internet of Things (IoT) market is Atmel. For the time being most designs will be done using standard components, not doing massive integration on an SoC targeted at a specific market. The biggest issue in the early stage of market development will be working out what the customer wants and so the big premium will be on getting to market early and iterating fast, not premature cost optimization for a market that might not be big enough to support the design/NRE of a custom design.

Latest product in Atmel's SmartConnect family, the SAM W25 module

Here is Atmel’s latest product in the SmartConnect family, the SAM W25 module

Atmel has microcontrollers, literally over 500 different flavors and in two families, the AVR family and a broad selection of ARM microcontrollers ad processors. They have wireless connectivity. They have strong solutions in security.

Indeed last week at Electronica in Germany they announced the latest product in the SmartConnect family, the SAM W25 module. It is the industry’s first fully-integrated FCC-certified Wi-Fi module with a standalone MCU and hardware security from a single source. The module is tiny, not much larger than a penny. The module includes Atmel’s recently-announced 2.4GHz IEEE 802.11 b/g/n Wi-Fi WINC1500, along with an Atmel | SMART SAM D21 ARM Cortex M0+-based MCU and Atmel’s ATECC108A optimized CryptoAuthentication engine with ultra-secure hardware-based key storage for secure connectivity.

Atmel at Electronica 2014

Atmel at Electronica 2014

That last item is a key component for many IoT designs. Security is going to be a big thing and with so many well-publicized breaches of software security, the algorithms, and particularly the keys, are moving quickly into hardware. That component, the ATECC108A, provides state-of-the-art hardware security including a full turnkey Elliptic Curve Digital Signature Algorithm (ECDSA) engine using key sizes of 256 or 283 bits – appropriate for modern security environments without the long computation delay typical of software solutions. Access to the device is through a standard I²C Interface at speeds up to 1Mb/sec. It is compatible with standard Serial EEPROM I²C Interface specifications. Compared to software, the device is:

  • Higher performance (faster encryption)
  • Lower power
  • Much harder to compromise

Atmel has a new white paper out, Integrating the Internet of Things, Necessary Building Blocks for Broad Market Adoption. Depending on whose numbers you believe, there will be 50 billion IoT edge devices connected by 2020.

Edge nodes are becoming integrated into everyone’s life

As it says in the white paper:

On first inspection, the requirements of an IoT edge device appear to be much the same as any other microcontroller (MCU) based development project. You have one or more sensors that are read by an MCU, the data may then be processed locally prior to sending it off to another application or causing another event to occur such as turning on a motor. However, there are decisions to be made regarding how to communicate with these other applications. Wired, wireless, and power line communication (PLC) are the usual options. But, then you have to consider that many IoT devices are going to be battery powered, which means that their power consumption needs to be kept as low as possible to prolong battery life. The complexities deepen when you consider the security implications of a connected device as well. And that’s not just security of data being transferred, but also ensuring your device can’t be cloned and that it does not allow unauthorized applications to run on it.
IoT Design Requirements - Software / Development Tools Ecosystem

IoT design requirements: Software / development tools ecosystem

For almost any application, the building blocks for an IoT edge node are the same:

  • Embedded processing
  • Sensors
  • Connectivity
  • Security
  • And while not really a “building block,” ultra-low power for always-on applications

My view is that the biggest of these issues will be security. After all, even though Atmel has hundreds of different microcontrollers and microprocessors, there are plenty of other suppliers. Same goes for connectivity solutions. But strong cryptographhic solutions implemented in hardware are much less common.

The new IoT white paper is available for download here.

This post has been republished with permission from SemiWiki.com, where Paul McLellan is a featured blogger. It first appeared there on November 19, 2014.

What’s not quite MCU, and not quite SoC?

There has been a lot of railing lately about how we don’t have quite the right chips for the upcoming wave of wearables. Chips one would drop in a smartphone are often overkill and overpowered, burning through electrons too quickly. Chips one would use for a simple control task generally lack peripherals and performance, offsetting their low power advantage.

One area we can feel this pressure building is in the Arduino community. Authentic Arduino boards have been Atmel AVR based, hosting 8-bit microcontrollers in a low power, simple-to-use,and easy-to-program environment. The popularity of Arduino shields for I/O expansion has driven a comber of compatible boards tossing 16- and 32-bit MCUs, and even some notable low-end SoCs, into the mix. Of course, straying into SoC territory introduces other popular form factors as well.

As with most technology with a sizable following, Arduino is now being forced to grow, as much due to its own success as due to external competition. Having mastered the basics of 8-bit, many makers are now stretching their capability and taking on more ambitious goals. At the same time, the pinout popularized by the Arduino Uno (ATmega328 MCU) remains in vogue, and changing too many things at once is bad form.


The recent debut of the Arduino Zero, and its first real-world appearance at Maker Faire Bay Area 2014 in May, marked the launch of the industrial-strength Atmel SAM D21 microcontroller with its ARM Cortex-M0+ core into the hearts and minds of Makers. However, this isn’t the first time a 32-bit ARM MCU has been seen in the Arduino neighborhood, but the endorsement with official Atmel-based hardware is a big step for the community.

A closer look reveals our budding trend of interest. The Atmel SAM D family is built for traditional control tasks, sans on-chip wireless and opting instead for ultra-low power and a mostly MCU-like peripheral mix. Revealed in the block diagram – note, on the Arduino Zero not all these features make it off the board – is a very SoC-like chip architecture, scaled down for power.

Atmel SAM D21 microcontroller block diagram

The Cortex-M0+ processor core in the Atmel SMART SAM D21 connects to three AHB bus segments plus memory ports via a high speed bus matrix, effectively separating traffic for memory, DMA and USB, power and clock management, and mixed signal I/O. One might wonder out loud what “high speed” means given a 48 MHz core frequency and the mix of peripherals shown, but let’s keep the context in mind.

Commenting on the current mania of smartphone SoCs being crammed into wearables with less than stellar results so far, I made a statement a few days ago I’ll stand by:

“A typical smartphone chip is 1W – for many wearables, that will be at least one and maybe two orders of magnitude off.”

The SAM D21 weighs in at less than 70uA/MHz, meaning fully clocked it pulls somewhere around 3.3mW – in the range of interest. Within that envelope, it can run full speed USB 2.0, unimpeded by other interrupts and without external components in “device” mode. An integrated I2S block brings full-rate audio streaming, and the obligatory Atmel integrated peripheral touch controller enables user interfacing. Also on chip are a flexible serial block, a multi-channel A/D, comparators, a D/A, plus a spate of timers.

Strictly speaking, the SAM D21 is still an MCU, demarcated primarily in terms of on-chip flash and RAM and no external memory. By retaining ultra-low power behavior while segmenting buses and rethinking integration for mixed signal, USB, audio, and touch, Atmel has taken a first step into the space between control MCUs and smartphone SoCs – with an eye on what wearables actually need to succeed. It’s a smart move to get the Arduino community on board and find out where this can go.

This post has been republished with permission from SemiWiki.com, where Don Dingee is a featured blogger. It first appeared there on May 21, 2014.