Tag Archives: smart energy platform

Atmel introduces next-gen SoC solution for smart metering

Atmel recently announced the introduction of its latest Power Line Communication System-on-Chip (SoC) solution designed for smart metering applications.

SmartEnergy_Update_Category_728x280_080514

The Atmel SAM4CP16B is an extension of Atmel’s SAM4Cx smart energy platform built on a dual-core 32-bit ARM® Cortex®-M4 architecture. Fully compatible with Atmel’s ATPL230A OFDM physical layer (PHY) device compliant with PRIME standard specification, this highly flexible solution addresses OEM’s requirements for various system partitioning, BOM reduction and time-to-market requirements by incorporating independent application, protocol stack and physical layer processing functions within the same device.

Atmel-smart

“We continue to build on the success of our industry leading SAM4Cx platform and offer best-in-class embedded connectivity, flexibility and cost structure for high-volume smart metering deployments,” said Andres Munoz, Atmel Marketing Manager, Smart Energy Communications. “Furthermore, additional enhancements developed to meet PRIME standard specifications provide unprecedented performance in rigorous environments.”

atmel_SMART_HomePage_980x352

As part of the Atmel® | SMART™ family, the solution includes integrated low-power driver, advanced cryptography, 1Mbytes of embedded Flash, 152Kbytes of SRAM, low-power RTC, and LCD controller. Additional key features include:

  • Application/Master Core
    — ARM Cortex-M4 running at up to 120 MHz
    — Memory Protection Unit (MPU)
    — DSP Instruction
    — Thumb®-2 instruction set
    — Instruction and Data Cache Controller with 2 Kbytes Cache Memory
  • Co-processor
    — ARM Cortex-M4F running at up to 120 MHz
    — IEEE® 754 Compliant, Single precision Floating-Point Unit (FPU)
    — DSP Instruction
    — Thumb-2 instruction set
    — Instruction and Data Cache Controller with 2 Kbytes Cache Memory
  • Symmetrical/Asynchronous Dual Core Architecture
    — Interrupt-based Interprocessor Communication
    — Asynchronous Clocking
    — One Interrupt Controller (NVIC) for each core
    — Each Peripheral IRQ routed to each NVIC Input
  • Cryptography
    — High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
    — TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
    — Classical Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
    — Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA assisted
  • Safety
    — 4 Physical Anti-tamper Detection I/O with Time Stamping and Immediate Clear of General Backup Registers
    — Security bit for Device Protection from JTAG accesses
  • PRIME PLC embedded modem
    — Power Line Carrier Modem for 50 Hz and 60 Hz mains
    — 97-carriers OFDM PRIME compliant
    — DBPSK, DQPSK, D8PSK modulation schemes available
    — Additional enhanced modes available: DBPSK Robust, DQPSK Robust
    — Eight selectable channels between 42kHz to 472kHz available
    — Baud rate Selectable: 5.4 to 128.6 kbps
    — Four dedicated buffers for transmission/reception
    — Up to 124.6 dBμVrms injected signal against PRIME load
    — Up to 79.6 dB of dynamic range in PRIME networks
    — Automatic Gain Control and continuous amplitude tracking in signal reception
    — Class D switching power amplifier control
  • Shared System Controller
    — Power Supply
    — Embedded Core and LCD Voltage Regulator for single supply operation
    — Power-on-Reset (POR), Brownout Detector (BOD) and Watchdog for safe operation
    —Low Power Sleep and Backup modes

Interested in learning more about Atmel’s new comprehensive smart energy platform? You can check out our recent deep dive on the subject here.

The Internet of Things and energy conservation

Humans are creative, and adaptive. We’ve done it all our lives, and all our existence. We needed more food, and so we created agriculture. We needed to live together, and so we created architecture. We needed to communicate, and so we created hundreds of ways to do just that; Internet, mobile telephone networks, computers. We are so fond of computers that we have them everywhere, often without noticing them. Yes, you might have a bulky desktop computer at home, or maybe even a flashy new laptop, but those are not the only computers. Your mobile telephone is a computer, but technically, so is your microwave, your car, your television set, and even your washing machine.

Our lives have changed greatly. We’ve all seen pictures and even films of medieval castles, and we know how we used to live. Today, our lives are made more comfortable by scores of machines; when was the last time you washed your clothes by hand? The clothes go in the washing machine, then in the dryer, and then in the cupboard. This all comes at a cost; financially, of course, but also in terms of energy.

Energy. The art of creating electrical power and delivering it to our homes and cities. For most people, this is as simple as having overhead power lines here and there, and paying a bill at the end of the month. Unfortunately, it is much more complicated than that. Power stations require scores of people to operate, and something surprising, data. In France, we have “too many” power stations, and most run at low capacity. When it gets hot, those who have air conditioning like to put it on, consuming electricity. Multiply that by a few thousand, and you get an idea of how much energy the power station needs to produce. When it gets cold, people like to heat their homes and businesses, and since everyone has radiators, electrical consumption soars. Imagine the amount of radiators an entire city can contain, and imagine even 50% of them turned on at the same time. Imagine.

Data is needed from other sources, not just from the weather. Imagine the amount of power required to let all the football fans watch the world cup. Our problem is that we can generate electricity, but we cannot store it (at least, not on this kind of scale). When everything gets turned on, the power station must be able to respond. If it can’t, bad things happen; the lights dim, or sometimes everything goes dark. We now know we cannot live without electricity.

SMART Energy Flow

We all know that we need to reduce our energy dependence, even if some of us don’t want to. To make more people aware, some cities turn off all the lights for an hour. It’s called Earth Hour. For one hour, people are encouraged to use as little electricity as possible; turning off the lights, for example. This does have an impact, but it is a double-edged sword. For one hour, the electricity usage drops considerably, while everyone thinks about the planet, and what we will leave behind for our children. At the end of the hour, everything goes back on, and this is where things get tricky. When electrical devices are first turned on, some can generate what is called an energy spike; a large consumption at first, before something more stable. It is visible just after Earth Hour, but it actually happens every day.

Building Appliances and Home Systems using Energy at Optimum Times

Peak hours. In my house, my electric water heater is connected to a peak-hour detection system. At 11:30 PM, my electricity provider starts “off-peak” hours, a time where electricity costs less. It costs less, an incentive to make me use power-hungry devices at a time when other devices are not needed. At this time of night, most businesses are closed, and so there is less demand. It is all about normalizing energy requirements, and to stop peaks during the day. At 7:30 AM, peak hours start, the water heater turns off, businesses start up, and my kettle turns on, the day is about to begin.

Ikea-kitchen_IoT-SMART-HOME-Connected

Energy is available, that isn’t the problem. Our problem is our use of energy. If only we had a way of using energy when it was available. Imagine, a certain amount of energy available. When I need light, I want my light to be usable immediately. I need a start time; now. However, when I put my clothes in the washing machine generally, I need them to be ready for the next day. I need and “end” time; I need the device to get the work done before a certain time. When will the washing machine start? Well, I don’t actually mind when it starts, and this is where I need help. This is where the IoT can help us, because we really need help.

The IoT will give us millions of connected sensors. This will also supply us with data, lots and lots of it. Why wouldn’t a small device in my house have direct control over my washing machine, or even better, actually be inside my washing machine? It could be programmed to start at a specific time, talking to other devices on the energy grid? Or even in my home; it could tell the water heater to wait until it has finished, and then the water heater gets its chance. The possibilities are endless.

Washing Machine is Connected - SMART HOME

IoT will give us an incredible amount of data, and data that can be used to help up control, and maybe even overcome our need to energy. But wait a minute, doesn’t the IoT itself need energy? It does, but the amount of energy that it will save outweighs the amount of energy it uses, and by a large factor. Take, for example, Atmel’s SAM D21 microcontroller. It uses less than 70µA per MHz, and that is when it is running at full speed. Of course, these devices have advanced power management, and with careful coding, they can last for months on cell batteries. Low power does not mean no power; it has enough flex to get the job done, and more. With built-in USB, ADCs, DACs and enough RAM and ROM for the most complex programs, it gets the job done. It also has the Atmel Event system, a powerful system that lets the microcontroller react to external events without the need to constantly look at inputs.

(Source CES 2014 - Samsung's Vision of the Now and Future of Connected Appliances)

We need a little help in our lives to make simple decisions; when should I turn the heating on? When is the best time to turn on the air conditioner? We think we know, but we don’t. IoT will allow us to know exactly when the cold weather is coming. IoT will know when to turn the lights off. In short, IoT will generate enough data that it will know better than us what to do, and when. What we have seen so far is only the beginning.

Embedded Developer features Atmel’s ATPL230A modem

Earlier this year, Atmel introduced the ATPL230A, a Power Line Communications (PLC) modem designed to implement the physical layer of the PRIME standard (Power Line Intelligent Metrology Evolution).

This month, the ATPL230A modem is featured in the June edition of EE Web’s Embedded Developer magazine. According to Atmel exec Kourosh Boutorabi, the ATPL230A offers OEMs a seamless and cost-efficient solution for smart metering platforms.

“Expanding on Atmel’s unique and highly flexible SAM4Cx platform, ATPL230A addresses the fifth pillar of [our] existing platform, the physical communication layer,” Boutorabi explained.

“Atmel’s ATPL230A can be paired with dual 32-bit ARM Cortex-M4 RISC processors to deploy an unprecedented level of integration and accuracy for single and multi-chip architecture options for system integrators and OEMs.”

The ATPL230A also boasts a class D line driver for PLC signal amplification, providing optimized signal injection efficiency by up to 62 percent.

Combined with low power sipping, this feature enables improved thermal behavior, extends long-term reliability and reduces overall power consumption. Meanwhile, new transmission modes and frequency band extensions facilitate robust power line communications.

As Boutorabi told the publication, Atmel is currently working with top tier customers worldwide who are developing multiple products for individual markets such as the Spanish, French or U.S. market.

“These customers need a supplier that addresses all their markets’ requirements. Our solution addresses 90 percent of all of these markets,” he said.

“Every utility has different communication requirements, so to be able to address all of these segments with one solution is a significant achievement.”

To help accelerate the design process for engineers, Atmel is currently offering the ATPL230A evaluation kit which can be used to test the ATPL230A’s smart metering capabilities with embedded PLC.

Interested in learning more about Atmel’s Smart Energy Platform? You can check out our recent deep dive on the subject here.

A closer look at Atmel’s smart energy platform (Part 2)

In part one of this series, Bits & Pieces introduced Atmel’s recently launched SAM4C series of products, with a spotlight on the SAM4C16 and SAM4C8. Designed for smart energy applications, these system-on-chip solutions are built around two high performance 32-bit ARM Cortex-M4 RISC processors. The devices operate at a maximum speed of 100 MHz and feature up to 2Mbyte of embedded Flash, 304 Kbytes of SRAM and on-chip cache for each core.

atmelsmartenergy3cropped

The dual ARM Cortex-M4 architecture facilitates the integration of various layers, including application, communications and metrology functions in a single device. It also offers options for integrated software metrology or external hardware metrology AFE (analog front end), as well as an integrated or an external power-line carrier (PLC) physical layer solution. Essentially, this is a modular approach that is sure to meet various design needs.

In part two of this series, we’ll be taking a closer look at the software and hardware metrology of the SAM4Cx. Specifically, Atmel’s software metrology library provides a comprehensive level of performance, scalability and flexibility which supports the integration of proprietary advanced metrology and signal processing algorithms.

“Atmel’s standard library enables residential, commercial, and industrial meter design up to class 0.2 accuracy, dynamic range of 3000:1, and are compliant with IEC 62052-11, 62053-22/23, ANSI C12.1, C12.20 and MID,” an Atmel engineering rep told Bits & Pieces.

atsense301

“Meanwhile, software metrology front-end electronics is comprised of ATSENSE-301 and ATSENSE-101 multi-channel (up to 7) simultaneously-sampled Sigma-Delta A/D converters at 16sps, high precision voltage reference with up to 10 ppm/°C temperature stability, programmable current signal amplification, temperature sensor and SPI interface.”

Additional SAM4Cx features include:

  • Poly-phase energy metering analog front end for Atmel’s MCUs and Metrology library.
  • Compliant with Class 0.2 standards (ANSI C12.20-2002 and IEC 62053-22).
  • Up to 7 Sigma Delta ADC measurement channels: 3 Voltages, 4 Currents, 102 dB Dynamic Range.
  • Current Channels with Pre-Gain (x1, x2, x4, x8).
  • Supports shunt, current transformer and Rogowsky coils.
  • 3.0V to 3.6V operation, Ultra Low Power: < 22 mW typ (device fully active @ 3.3V).
  • Precision voltage reference.
  • Temperature drift: 50ppm typ (ATSENSE-301)and 10ppm typ (ATSENSE-301H).
  • Factory measured temperature drift and die temperature sensor to perform software correction.
  • 8 MHz Serial Peripheral Interface (SPI) compatible mode 1 (8-bit) for ADC data and AFE controls.
  • Interrupt Output Line signaling ADCs’ end of conversion, under-run and over-run.
  • Package: 32-lead TQFP, 7 x 7 x 1.4 mm.

atmelmetrology

In terms of hardware metrology (AFE), Atmel offers out-of-the-box solutions for basic metering that supports up to class 0.2 accuracy; exceeds IEC and ANSI standards and offers best-in-class temperature drift.

Additional specs include:

  • A dynamic range up to 6000:1
  • Optimizes performance
  • Reduces OEM’s cost of manufacturing
  • Great fit with SAM4L
  • picoPower Technology
  • Active mode @ 90μA/MHz
  • Full RAM retention @1.5μA
  • SleepWalking
  • 4×40 Segment LCD Controller
  • Hardware Crypto block

Interested in learning more about Atmel’s new comprehensive smart energy platform? Be sure to check out our official product page here, part one of our deep dive here and part three here.

A closer look at Atmel’s smart energy platform (Part 1)

Driven by evolving environmental concerns and regulations, the market for energy, water and gas metering systems is rapidly changing. To be sure, traditional standalone meters are currently being replaced by complex networked systems that utilize a variety of communication methods.

smartenergy2revised

To meet the needs of an evolving smart grid, engineers require solutions capable of providing advanced connectivity options, iron-clad security, precise metrology, versatility and a high-level of integration.

Atmel addresses the needs of the evolving smart energy market with application-specific, as well as standard microcontroller (MCU), microprocessor (MPU), security, memory, wireless and power-line connectivity devices. Simply put, our portfolio offers developers a wide range of best-in-class feature sets and performance for smart grid equipment.

“Today’s smart meter architect demands various levels of integration depending on system architecture partitioning, project timelines, and the level of flexibility needed to address various utility and geographical requirements,” an Atmel engineering rep told Bits & Pieces.

The Atmel platform provides a unique multi-level architecture built around the same multi-core architecture as outlined below. Various devices integrate the building blocks of the smart meter, namely, metrology sensing (ADC), metrology DSP, application, communication, and security processing, as well as connectivity to home area and neighborhood area networks.”

atmelsmartenergyplatform2

Key Atmel differentiators include:

  • Leading-edge connectivity
  • Low power 802.15.4/4g wireless devices
  • Field proven, low power PLC (PRIME)
  • Integration & flexibility
  • Flexible (SW or HW) metrology
  • Multi-standard wireless and PLC solutions
  • Advanced cryptography
  • Best-in-class metrology
  • Dynamic range of up to 6000:1
  • 25M units shipped since 90’s
  • Broad MCU portfolio
  • Large array of SAMD, SAM4 and SAM5 solutions
  • Best-in-class tools from Atmel, IAR and Keil

smartenergy1revised

At the core of Atmel’s smart energy platform is the SAM4C series of products, starting with the SAM4C16 and SAM4C8 system-on-chip solutions for smart energy applications built around two high performance 32-bit ARM Cortex-M4 RISC processors. These devices operate at a maximum speed of 100 MHz and feature up to 2Mbyte of embedded Flash, 304 Kbytes of SRAM and on-chip cache for each core.

The dual ARM Cortex -M4 architecture facilitates the integration of various layers, including application, communications and metrology functions in a single device. It also offers options for integrated software metrology or external hardware metrology AFE (analog front end), as well as an integrated or an external power-line carrier (PLC) physical layer solution. Essentially, this is a modular approach that is sure to meet various design needs.

atmelsmartenergy3cropped

Interested in learning more about Atmel’s new comprehensive smart energy platform? Be sure to check out our official product page here and part two of our deep dive here.