Tag Archives: SAM4Cx

Atmel launches G3-PLC-compliant power-line carrier solutions

During European Utility Week 2014, Atmel will be debuting a pair of new power-line communication solutions compliant with the G3-PLC specification.

B1lah7sIgAAk_o3

The new Atmel G3-PLC products include the SAM4CP16C system-on-chip (SoC) and ATPL250A modem that are pin-compatible with PRIME-compliant members of the Atmel | SMART portfolio of energy metering solutions already in production. The SoC option is similar to the rest of the SAM4Cx products built around a dual-core 32-bit ARM Cortex-M4 architecture with advanced security, metrology and wireless and power-line communications (PLC) options. This unique and highly flexible platform addresses OEM’s requirements for flexible system partitioning, lower bill of materials (BOM) and improved time-to-market.

“Utilities worldwide require OEMs to meet very high reliability standards at aggressive cost points for smart meters which embed advanced feature sets in connectivity, security and flexibility,” explained Colin Barnden Semicast Research Principal Analyst. “Additionally, smart meters to be deployed in several countries are required to be certified for compliance with the latest specifications including G3-PLC, PRIME and IEEE 802.15.4g. Atmel’s smart metering solutions now meet the required criteria for emerging standards based smart metering deployments from a reliability, performance, interoperability and cost perspective.”

These new products address the European (CENELEC), American (FCC) and Japanese (ARIB) profiles defined by the G3-PLC Alliance. Atmel is an active participant in the G3-PLC Alliance certification program and expects full CENELEC certification in November followed by FCC and ARIB band certifications in the coming months.

A distinguishing feature of the ATPL250A and SAM4CP16C is an integrated Class-D line driver, which provides outstanding signal injection efficiency and improved thermal characteristics compared to competing technologies. This will help eliminate reliability issues encountered in the field as a result of thermal overheating. Additionally, common architecture, software environment and tools ensure that our customers’ R&D investments can be shared and re-utilized over multiple projects which address various connectivity standards.

SAM4CP16C_LQFP176_angle2

Key features of the SoC include:

  • Application 
    • ARM Cortex-M4 running at up to 120 MHz,
    • Memory protection unit (MPU)
    • DSP Instruction
    • Thumb-2 instruction set
    • Instruction and data cache controller with 2 Kbytes cache memory
  • Co-processor
    • ARM Cortex-M4F running at up to 120 MHz
    • IEEE 754 compliant, single precision floating-point unit (FPU)
    • DSP Instruction
    • Thumb-2 instruction set
    • Instruction and data cache controller with 2 Kbytes cache memory
  • Symmetrical/Asynchronous dual core architecture
    • Interrupt-based interprocessor communication
    • Asynchronous clocking
    • One interrupt controller (NVIC) for each core
    • Each peripheral IRQ routed to each NVIC input
  • Cryptography
    • High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
    • TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
    • Classical public key crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
    • Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA assisted
  • Safety
    •  4 physical anti-tamper detection I/O with time stamping and immediate clear of general backup registers
    • Security bit for device protection from JTAG accesses
  • G3 PLC embedded modem
    • Power-line carrier modem for 50 Hz and 60 Hz mains
    • Implements G3-PLC CENELEC, FCC and ARIB profiles
    • G3-PLC coherent and differential modulation schemes available
    • Automatic Gain Control and continuous amplitude tracking in signal reception
    • Class D switching power amplifier control
  • Shared system controller
    • Power supply
    • Embedded core and LCD voltage regulator for single supply operation
    • Power-on-reset (POR), brownout detector (BOD) and watchdog for safe operation
    • Low-power sleep and backup modes

APTL250A_LQFP80_angle2

While notable components of the ATPL250A include:

  • G3-PLC modem
    • Implements G3 CENELEC-A, FCC and ARIB profiles (ITU-T G.9903, June ´14)
    • Power-line carrier modem for 50 Hz and 60 Hz mains
    • G3-PLC coherent and differential modulation schemes available
  • Automatic gain control and continuous amplitude tracking in signal reception
  • 1 SPI peripheral (slave) to external MCU
  • Zero cross detection
  • Embedded PLC analog front end (AFE), requires only external discrete high efficient Class D line driver for signal injection
  • Pin to pin compatible to ATPL30A, Atmel modem for PRIME PLC

The first batch of samples and evaluation kits will be available this month, mass production is slated for January 2015. In the meantime, those wishing to learn more about Atmel’s PLC solutions can head here.

Atmel expands metering platform for advanced smart energy apps

Atmel has expanded its Atmel | SMART portfolio of energy metering products with the recent introduction of the SAM4C32 dual-core secure MCU, along with the SAM4CMS32 and SAM4CMP32 for residential, commercial and industrial metering applications. The new system-on-chip (SoC) solutions have 2MB of cache-enabled dual-bank flash, are pin-pin compatible with existing 512KB and 1MB devices in the portfolio, and allow unparalleled scalability and design-reuse for next-generation smart metering platforms.

atmel_SMART_Microsite_980x352

The SAM4Cx series is built on a dual-core 32-bit ARM Cortex-M4 architecture with flexible firmware metrology capability up to a class 0.2 accuracy designed to meet WELMEC requirements for the separation of legal metrology, applications and communications. All devices include advanced security features, low-power real-time clock and LCD driver, and multiple serial interfaces resulting in a best-in-class level of integration, performance and lower bill of material (BOM) cost.

atmelsmartenergy3cropped

“As the rate of smart meter deployments continue to rise in several European and Asian regions, our customers demand an unprecedented level of integration and scalability to maximize their R&D investment and to address multiple utility markets more quickly at lower cost points,” explained Kourosh Boutorabi, Atmel’s Senior Director of Smart Metering. “We are committed to offering next-generation smart metering system architects a broad portfolio of solutions based on the same core platform architecture, software and tools.”

banner_atmel_smartenergy

As we’ve previously discussed on Bits & Pieces, the Atmel | SMART SAM4Cx is a comprehensive smart energy platform designed specifically for grid communications, electricity, gas and water metering systems, and energy measurement applications.

Key features of the SAM4CMS32 and SAM4CMP32 include:

  • Application / Master Core
    • ARM Cortex-M4 running at up to 120MHz
    • Memory Protection Unit (MPU)
    • DSP Instruction
    • Thumb®-2 instruction set
    • Instruction and Data Cache Controller with 2 Kbytes Cache Memory
    • 2Mbytes of flash, 256Kbytes of SRAM, 8Kbytes of ROM
  • Coprocessor (provides ability to separate application, communication or metrology functions)
    • ARM Cortex-M4F
    • IEEE 754 Compliant, Single precision Floating-Point Unit (FPU)
    • DSP Instruction
    • Thumb-2 instruction set
    • Instruction and Data Cache Controller with 2 Kbytes Cache Memory
    • 32K+16K bytes of SRAM
  • Symmetrical/Asynchronous Dual Core Architecture
    • Interrupt-based Inter-processor Communication
    • Asynchronous Clocking
    • One Interrupt Controller (NVIC) for each core
    • Each Peripheral IRQs routed to each NVIC Inputs
  • Cryptography
    • High performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
    • TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
    • Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
    • Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA assisted
  • Safety
    • Two (ATSAM4CMS32) / one (ATSAM4CMP32) physical Anti-Tamper Detection I/Os with Time Stamping and Immediate Clear of General Backup Registers
    • Security Bit for Device Protection from JTAG Accesses
  • Shared System Controller
    • Embedded Core and LCD Voltage Regulator for single supply operation
    • Power-on-Reset (POR), Brownout Detector (BOD) and Dual Watchdog for safe operation
    • Ultra-low-power Backup mode (< 0.5 µA Typical @ 25°C)
    • Optional 3 to 20 MHz quartz or ceramic resonator oscillators with clock failure detection
    • Ultra-low-power 32.768 kHz crystal oscillator for RTC with frequency monitoring
    • High-precision 4/8/12 MHz factory-trimmed internal RC oscillator with on-the-fly trimming capability
    • One high-frequency PLL up to 240 MHz, one 8 MHz PLL with internal 32 kHz input
    • Low-power slow clock internal RC oscillator as permanent clock
    • Power Supply
    • Clock
    • Ultra-low-power RTC with Gregorian and Persian Calendar, Waveform Generation and Clock Calibration
    • Up to 23 Peripheral DMA (PDC) Channels
  • Shared Peripherals
    • One Segmented LCD Controller
      • Display capacity of 38 segments and 6 common terminals
      • Software-selectable LCD output voltage (Contrast)
      • Can be used in Backup mode
    • Four USARTs (ATSAM4CMS32) or three USARTs (ATSAM4CMP32) with ISO7816, IrDA®, RS-485, SPI and Manchester Mode /
    • Two 2-wire UARTs
    • Up to two 400 kHz Master/Slave and Multi-Master Two-wire Interfaces (I2C compatible)
    • Up to five Serial Peripheral Interfaces (SPI)
    • Two 3-channel 16-bit Timer/Counters with Capture, Waveform, Compare and PWM modes
    • Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
    • 3-channel 16-bit Pulse Width Modulator
    • 32-bit Real-time Timer
  • Energy Metering Analog-Front-End Module
    • Works with Atmel’s MCU Metrology library
    • Compliant with Class 0.2 standards (ANSI C12.20-2002 and IEC 62053-22)
    • Four Sigma-Delta ADC measurement channels, 20-bit resolution, 102 dB dynamic range
  • Analog Conversion Block
    • 6-channel, 500 kS/s, Low-power, 10-bit SAR ADC with Digital averager providing 12-bit resolution at 30 kS/s
    • Software Controlled On-chip Reference ranging from 1.6V to 3.4V
    • Temperature Sensor and Backup Battery Voltage Measurement Channel
  • I/O
    • Up to 57 I/O lines (ATSAM4CMS32) or up to 52 I/O lines (ATSAM4CMP32) with External Interrupt Capability (edge or level sensitivity), Schmitt Trigger, Internal Pull-up/pull-down, Debouncing, Glitch Filtering and On-die Series Resistor Termination
  • Package
    • 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm

Learn more about the newest SAM4C32 MCUs here.

Atmel’s SAM4Cx clinches ACE awards nomination

Atmel’s ARM-based SAM4Cx platform had been nominated as one of the 2014 ACE award finalists in the category of energy technology.

The 2014 ACE Awards, presented by EE Times and EDN, showcases the best of the best in today’s electronics industry, including the hottest new products, start-up companies, design teams, executives and more. Winners will be announced April 1 at the ACE Awards event held in conjunction with EE Live.

“One of the many joys of working with ARM Partners is to witness their technologies and teams recognized for their hard work,” an ARM rep told Bits & Pieces.

“We look forward to reviewing the ACE Awards each year to see which Partners have been nominated as a finalist. It makes us proud each year to see the pervasiveness of the ARM technology in so many categories.”

As we’ve previously discussed on Bits & Pieces, Atmel’s ARM-based SAM4Cx is a comprehensive smart energy platform designed specifically for next-gen grid communications, electricity, gas and water metering systems and energy measurement applications.

The Atmel SAM4Cx platform includes several system-on-chip (SoC) devices built around a dual-core ARM Cortex-M4 architecture with advanced security, metrology, wireless and power-line communications (PLC) options.

Key features of Atmel’s smart energy platform include best-in-class metrology with class 0.2 accuracy and dynamic range of up to 6000:1 for single and poly-phase applications; low-power PRIME PLC connectivity with integrated line driver; advanced cryptography; the ability to integrate application, communication and metrology; up to 2Mbytes of embedded Flash and 304Kbytes of SRAM with external memory expansion option.

Additional specs include low-power RTC, LCD and anti-tamper feature sets designed to reduce smart meter BOM by as much as 40 percent.

Interested in learning more about Atmel’s new and comprehensive smart energy platform? Be sure to check out our official product page here and Atmel’s SAM4Cx deep dive here.

A closer look at Atmel’s smart energy platform (Part 3)

In part one of this series, Bits & Pieces introduced Atmel’s recently launched SAM4C series of products, with a spotlight on the SAM4C16 and SAM4C8. In part two, we took a closer look at both the software and hardware metrology of the SAM4Cx.

Today, we’ll be discussing Atmel’s lineup of PLC physical layer and system-on-a-chip (SoC) area standards-compliant OFDM-based solutions, designed for narrowband communications using a low-voltage electric power distribution network. Proven in large-volume deployments across several utilities and markets, our unique technology offers high performance and integration levels, low power sipping, reduced bill-of-materials (BOM) costs, PRIME / ITU-T G.9904 and CENELEC compliance.

“Offered in a single chip SoC and in a two chip PHY+MCU configurations respectively, the Atmel SAM4CP16B and ATPL230 PRIME version 1.4 compliant devices include two additional Robust modes, DQPSK and DBPSK – achieving an increase in gain of up to +14.5 dB as compared to version 1.3.6 devices,” an Atmel engineering rep told Bits & Pieces.

atmelsmartenergyplc

“These devices also can operate at a wider span of FCC and ARIB bands with up to 8 selectable channels achieving baud rates ranging from 5.4 to 1028.8 kbps.”

Meanwhile, Atmel’s built in Class-D amplifier architecture is up to 30% more efficient than competing solutions with only a handful of external discrete components – neatly reducing power waste due to heat dissipation and increasing long-term reliability via optimized thermal behavior.

atmelplc2

In addition, an extensive array of system IO, LCD, memory, RTC, DMA and cryptographic resources available in SAM4CP16C facilitates integration of application, communication and metrology software (using external ATSENSE devices) to achieve highly reliable, flexible and cost effective smart meter designs.

“Plus, with free certified PRIME stacks for Atmel, devs will be able to concentrate their development efforts on application development,” the engineering rep noted.

atmelplc3

“With modular software architecture and the advanced capabilities of the management plane, the Atmel stack provides unparalleled flexibility in software architecture, while reducing the memory requirements of the top-level application.”

Interested in learning more about Atmel’s new comprehensive smart energy platform? Be sure to check out our official smart energy product page, along with part one, part two and part four of our deep dive.

New smart energy solutions @ European Utility Week

Today at the European Utility Week Conference, Atmel debuted its new and comprehensive smart energy platform designed specifically for smart grid communications, electricity, gas and water metering systems and energy measurement applications.

According to Kourosh Boutorabi, Atmel’s Sr. Director of Smart Energy Products, the Atmel SAM4Cx platform includes several system-on-chip (SoC) devices built around a dual-core ARM Cortex-M4 architecture with advanced security, metrology, wireless and power-line communications (PLC) options.

smartenergy1revised

“The unique and highly flexible platform addresses OEM’s system partitioning, bill of materials (BOM) and time-to-market requirements with the widest range of integration and performance optimization options available in the market today,” Boutorabi explained.

“Flexibility to address a new and diverse set of smart grid communications and metrology standards with low power system-on-chip solutions are crucial requirements for OEMs targeting high-volume deployments. We are excited that Atmel’s industry leading technologies address OEM requirements as a new and innovative multi-layered platform.”

smartenergy2revised

Indeed, key features of Atmel’s smart energy platform include best-in-class metrology with class 0.2 accuracy and dynamic range of up to 6000:1 for single and poly-phase applications; low-power PRIME PLC connectivity with integrated line driver; advanced cryptography; the ability to integrate application, communication and metrology; up to 2Mbytes of embedded Flash and 304Kbytes of SRAM with external memory expansion option. Additional specs include low-power RTC, LCD and anti-tamper feature sets designed to reduce smart meter BOM by as much as 40 percent.

Interested in learning more about Atmel’s new and comprehensive smart energy platform? Be sure to check out our official product page here.