Tag Archives: SAM D10

Node.IT is like the LEGO for building IoT devices


Node.IT is a super small and extendable Internet of Things system for Makers. 


It’s safe to say that one size does not fit all when it comes to DIY electronics. This has led countless Makers to embrace interchangeable, easy-to-use components like littleBits when beginning to tinker around with an idea. With aspirations of becoming the LEGO for the Internet of Things, Pontus Oldberg has developed a family of modules with different functions that can be stacked to create wide range of smart projects.

Node

The concept for Node.IT was first conceived following the launch of the highly-popular ESP8266, an inexpensive, self-contained Wi-Fi SoC. Oldberg and his team had explored various ways of interfacing the device to other processors, but not before long discovered that the chip was already powerful enough to perform most tasks. And so, the ESP8266 was chosen to be at the heart of Node.IT’s base controller, which packs 4Mb of Flash, an efficient voltage regulator and can be programmed via microUSB.

“We quickly realized that if we created a base controller with a minimum set of features such as the ESP8266, a USB to Serial transceiver and a simple voltage regulator you end up with a completely autonomous board that can be hooked up to a USB port and programmed directly, without any other circuitry,” Oldberg writes.

This steered its creators toward the ESP210, a 27mm x 17mm module complete with everything needed to configure the device and hook it up to a wireless network. While the MCU itself was very expandable and provided easy access to all the GPIOs of the processor, it was rather cumbersome to build some of the necessary add-ons. Subsequently, Oldberg designed what he calls the +One and WorkStation boards to establish an entire infrastructure around the ESP210.

Stac

Similar to the Microduino mCookie and several others, the +One boards can be stacked on top of one another with LEGO-like ease. There’s currently a handful of +Ones available, including a Li-ion charger, an enviornmental sensor, a GPIO expander, a four-channel 12/16-bit A/D converter, a battery-backed real-time clock, as well as a two-channel DC driver that is in the works.

The final member of the family, the WorkStation, acts as the carrier board for the entire Node.IT stack. Equipped with an Atmel | SMART SAM D10, these microcontrollers expand the ESP210 with up to eight analog (12- or 16-bit) ADC channels, eight normal GPIO lines, and six timer/counter/PWM pins.

“The +One boards works very much like Lego bricks in that they plug on to the headers of the ESP210. The WorkStation boards can be considered the reverse of the +One boards in that the ESP210 plugs in to the WorkStation board. This way we can build add-on boards that can build in every direction.”

Ar

Makers can code their devices using a custom Ecosphere program, which was built around the Arduino IDE. Oldberg shares, “Any software libraries that are required for +One or WorkStation boards or features required for the ESP210 to do its job will be developed for the Arduino SDK. By using the Arduino IDE and its vast library of functionality you as a developer have endless possibilities when it comes to develop functionality for your systems.”

Sound like an IoT system you’d like to try? Head over to its Kickstarter page here. You can also find all of the drivers and related software for the Node.IT project on its GitHub page.

Atmel expands SAM D Cortex M0+ MCU portfolio

Atmel has expanded its low-power ARM Cortex M0+-based MCU portfolio with three new families: the SAM D21, D10 and D11. These entry-level, low-power MCUs are packed with high-end features including Atmel’s Event System, SERCOM module, peripheral touch controller and a full-speed USB interface.

“As more devices are becoming smarter and connected in this era of the Internet of Things (IoT), designers are looking for MCUs with additional connectivity and communication options to scale their applications in the consumer, industrial and medical markets,” explained Patrick Sullivan, Vice President of Marketing, Microcontroller Business Unit, Atmel Corporation.

“Atmel’s new SAM D21, D10 and  D11 families of Cortex M0+-based MCUs deliver low-power consumption, connectivity and small footprint, providing designers just the right price-to-performance ratio. These new families expand the company’s growing line of Atmel Smart microcontrollers with new pin and memory combinations, along with new features such as DMA and crystal-less USB.”

samd2tools
As we’ve previously discussed on Bits & Pieces, Atmel’s SAM D portfolio is architected beyond the core, leveraging over two decades of MCU experience to create unique, connected peripherals that are easy-to-use, while providing scalability and performance. Indeed, to help simplify the design process and eliminate the need for additional components, Atmel’s new SAM D lineup integrates additional functionality, including full-speed crystal-less USB, DMA, I2S, timers/counters for control applications, along with several other new features. Atmel’s SAM D devices are also code- and pin-compatible making it easy for designers to migrate up and down the family.

“Atmel’s expanded portfolio of low-power SAM D family ARM Cortex-M0+-based devices enables more designers to deliver smart devices in this increasingly connected world,” said Noel Hurley, Deputy General Manager, CPU Group, ARM.

“The ARM Cortex-M0+ processor is a highly area- and energy-efficient core which enables partners, such as Atmel, to provide the right peripheral set, intelligence, communication and memory for their customers’ needs.”

Key  SAM D21 features include:

  • 48MHz operation
2.14 Coremark/MHz
  • Single-cycle IO access
  • 
6- to 12-channel Event System
  • 
6- to 12-channel DMA
  • Up to six SERCOM modules configurable as UART/USART, SPI, I2C
  • 12Mbps USB 2.0 device with an embedded host and device
  • 
Two-channel I2S with 96MHz fractional PLL for audio streaming
  • Up to five 16-bit timers, up to three 16-bit times optimized for control applications
  • Peripheral touch controller supports up to 256 touch channels for capacitive touch buttons, sliders, wheels and proximity sensing
  • 
Down to 70uA/MHz in active mode
  • 4uA RAM retention
  • Real-time clock and calendar
  • 
Option to choose between internal and external oscillators, on-the-fly clock switching
  • 
Sleepwalking

To help accelerate the design process, the $39 SAM D21 Xplained Pro is equipped with an embedded debugger/programmer and offers support for a wide range of compatible extensions boards. Standalone programmer debugger solutions supporting the SAM D family are also available from both Atmel and third parties, with the Atmel SAM D MCUs fully supported by Atmel Studio and Atmel Software Framework.

The SAM D21 is the first family in this expanded portfolio, and samples and tools are available today with volume production in May 2014. The SAM D21 is offered in 32KB to 256KB of Flash and in 32-, 48- and 64-pin packages. Meanwhile, the SAM D10 and D11 families will be available in 14- and 20-pin SOIC and 24-pin QFN packages with up to 16KB of Flash. Both memory options feature 4KB of SRAM. All package options minimize the number of power pins to maximize the amount of IO available for the application. Engineering samples and tools are slated to go live in Q2 2014.