Tag Archives: robotics

KATIA is a robotic arm that can scan, 3D print, laser cut and even decorate a cake


KATIA brings the functionality of an industrial robotic arm to mainstream consumers. 


Will robots replace humans? This is a question we have speculated for decades, and the World Economic Forum released a report this week predicting the “Fourth Industrial Revolution” in 2020. While the thought of robots taking over can be daunting, one San Francisco-based startup offers a positive near future where robots can work with us.

Katia.png

Meet KATIA — short for “Kick Ass Trainable Intelligent Arm” — the brainchild, or shall we say brain arm, of Carbon Robotics. Behind this great name is an even greater product. KATIA is a robotic arm that is modular, open source and can be manually trained for those not fluent in code, making it incredibly versatile and easy to use. Co-founders Rosanna Myers and Dan Corkum sought to create a robotics platform designed for the consumer market. Ordinary people can make use of KATIA, no programming skills or roboticist required.

KATIA is hackable, modular and customizable for each use and environment. It was built on an open platform so users can access its API via tools like Arduino and Python. Add-on attachments can be swapped on and off the robotic device, allowing KATIA to be more than a just an arm that can grab and move objects. It can be transformed into a 3D scanner, 3D printer, laser cutter, and even a cake decorator.

CYD844xWkAA54P2

KATIA can be taught new movements if you simply guide the arm as it will replicate the desired motion, or you can draw a path for it to follow in the accompanying app. So if you wanted to decorate a cake, for example, KATIA can squeeze the icing in the design of your choosing.

The Carbon Robotics team recently presented at TechCrunch’s Hardware Battlefield finals back at CES 2016, where Myers said in the presentation, “The problem is that [robotic arms] are expensive. They’re difficult to use, and quite frankly not that safe. And that’s where we come in.”

KATIA can carry up to 1 kilogram (2.2 pounds) and moves with sub-millimeter precision. This powerful robotic arm also ensures safety. Enclosed in its carbon fiber frame are sensors that can detect humans and things that come within close range.

Marketed as having the capabilities of an industrial robot at the price of a laptop, KATIA will be selling for $1,999 starting this March. To stay up-to-date, be sure to check out the Carbon Robotics website here.

This Maker built his own robot drinking buddy


Bot-toms up!


Let’s face it, there’s no fun in drinking alone. This is what inspired South Korean Maker Eunchan Park to develop a robot that can literally go shot for shot with him, albeit never actually consuming the alcohol. Although he may not be able to chat like some of your best buds, the slick device can accompany you if you feel like throwing back a few when no one else is around.

Robot.png

While there have been plenty of bots capable of preparing and mixing cocktails for you in the past, we’re not sure if we’ve ever seen one that actually drinks with you instead. Not only can the aptly named Robot Drinky cheers your glass, his cheeks emit a red light with every chug and he can even signal for a refill as well.

The idea for such a companion was conceived after experiencing a lonely holiday a few years back. As Park explains:

On Christmas in 2012, I drank Soju (Korean alcohol) alone because I had no girlfriend at that time. Drinking alone was definitely terrible! So I couldn’t drink anymore.
Lastly, I put an extra glass in front of me and poured Soju into it. And then, I cheered by myself with the glass of Soju, as though there was someone in front of me. Surprisingly, after that, the taste became totally to be changed!!!!!! WOW!!!

So, I could finally find the secret of taste of alcohol totally depends on existence of partner. This is why I made this robot.

There’s no word yet on whether the Maker has any future plans for Drinky, but we wouldn’t be surprised to find it on Kickstarter or at a CES in the near future. See him in action below!

A DIY quadruped that waves and walks


Maker builds a 3D-printed, Arduino-based social quadruped that can wander freely or be controlled via Bluetooth.


The Makecourse at the University of South Florida teaches the basic skills for engineering design projects, and, unlike most classes of this type, is open to all USF students with no prerequisites. For his part in it, Chomba Waihenya decided to build a quadruped robot. The bot can be controlled via a Bluetooth connection (including a phone app that he wrote), or it can be set free to wander about, avoiding obstacles using an ultrasonic range finder.

build-own-walking-waving-3d-printed-social-quadruped-robot-1

The first design for the quadruped involved three servos, or three degrees of freedom (DOF), per leg, but after initial testing he decided to go with a simpler two servo/DOF design. The robot takes advantage of a sliding gait to move, as shown in the videos below. The outer servo makes the leg either stretch out or contract, affecting the amount that it grips the smooth floor. Depending on how these two servos are positioned and moved, this allows the ‘bot to move forward, backward, left, or right. Additionally, it can lie down on command, as well as do a friendly wave with either of its front appendages, making it a “social” quadruped.

build-own-walking-waving-3d-printed-social-quadruped-robot-4

Control is accomplished via an Arduino Uno (ATmega328) with a Bluetooth module, with an Arduino V5 sensor shield for simplified wiring. As eight servos plug into the shield in this application, the term “sensor shield” probably doesn’t give its abilities enough credit!

This DIY BB-8 will have you at beep


Just in time for The Force Awakens, one Maker has built his own 3D-printed, remote-controlled BB-8.


Although we’re just days away from the release of Star Wars: The Force Awakens, it’s safe to say that BB-8 has already become the breakout star of the film. Since first laying eyes on the soccer ball-sized droid in the trailer, it has seemingly captured the hearts of everyone — whether a fan or not.

thumbnail3

Instead of rushing to stores and purchasing a mini BB-8 of their own, several Makers have opted to build their own cute metallic orange ball with a beeping head. Take software engineer Jean-René Bédard, for example. His version is entirely 3D-printed, hand-painted and powered by a simple ATmega328 based, Arduino-compatible robotic platform.

The Maker designed his BB-8 in SketchUp and then spit him out using two Dremel Idea Builder 3D printers — a process that took roughly 50 hours to completed and called for over 650 feet (200 meters) of PLA filament.

Although it may not roll like the one in the Hollywood flick, Bédard’s bot can balance itself on a pair of wheels and be controlled with a basic RF remote. It is equipped with authentic sounds and several Adafruit LEDs to give it the full effect along with its orange and silver nail polish exterior. What’s more, the beeping BB-8’s head moves via a micro servo actuated by the Arduino.

This project will surely awaken your Maker forces. See for yourself below!

 

This Mecanum wheel robot has some serious parallel parking skills


Build an Arduino-based, Bluetooth-controlled Mecanum wheel robot that can move in all four directions, without rotating itself. 


Mecanum wheels have additional secondary rollers offset at an angle. These allow for a device or robot equipped with four of them to move in any direction, even directly left and right depending on which combination of four wheels is actuated. If you’ve never seen this sliding locomotion method before, be sure to check out the video below to see just how this robot works. Although only shown traveling in straight lines there, these type of wheels are also capable of rotating a vehicle.

FZIGX0BIGZGRI72.MEDIUM

According to the author of this project, a Warsaw, Poland-based Maker named Adam, “Since I can remember I always wanted to build a mecanum wheel robot. The Mecanum wheel robotic platforms available on the market were a little too expensive for me so I decided to build my robot from scratch.”

His build is simple but elegant, with two pairs of motors attached to each other via metal tubing, then fastened to a simple chassis made out of a rectangular piece of plastic. As needed for this type of locomotion, wheels are spaced so that the smaller rollers are all pointing toward the center of the bot.

FWJYI30IGZGVDU5.MEDIUM

The Maker used an Arduino Mega (ATmega2560) along with a Bluetooth module that enables him to wirelessly control the robot using an Android app. The electronic system is equipped with two power sources: an 11.1V 1300 mAh LiPo for supplying the DC motors and a 7.4V 1800 mAh LiPo for the ‘duino. Adam explains what is physically happening in his Instructables article, as well as how the code generally works. If you’d like more details on his code, the full program is available on GitHub.

mBot is an Arduino-compatible educational robot for young Makers


Now part of the Arduino AtHeart program, Makeblock is looking help children learn how to program through a user-friendly kit, software and interface. 


Over the past couple of years, we’ve seen a number of easy-to-use robotic kits become available for young Makers in hope of inspiring them to pursue STEM-related fields. Among the more notable companies looking to spur this initiative is Shenzhen startup Makeblock with their low-cost educational robot

Mot.png

In the company’s pursuit of an O.R.P.K (or “One Robot Per Kid”) world, mBot was designed to be a comprehensive solution that would provide children with a hands-on experience around graphical programming, electronics and robotics. With simplicity in mind, the kit is comprised of only 45 or so pieces, enabling a sense of achievement for kids to quickly assemble in 10 minutes.

Given the popularity of Scratch 2.0 as a graphical programming software in the classroom setting, the Makeblock team has developed a new line of Scratch-based software — aptly named mBlock — that uses a similar coding style to configure Arduino and robots. The drag-and-drop software is entirely free and supports both Window and Mac operating systems. Beyond that, mBlock supports wireless communication, allowing Makers to use either Bluetooth or 2.4GHz wireless serial to ‘talk’ with its accompanying mBot. The program is also compatible with Arduino Uno (ATmega328) and Leonardo (ATmega32U4) boards, as well as Makeblock’s own Arduino variant, the mCore.

a74c6cdbf1fa805428f04c70d644646d_original-1

Powered by an ATmega328, each mBot board features intuitional color labels and four easy-to-follow RJ25 connectors. This lets Makers wire the unit in a matter of seconds, and more importantly, provides them with a hassle-free way to focus on actually devising all sorts of interactive projects — ranging from robots that can avoid walls and follow lines to play music and duke it out in a fight.

The friendly blue robot is currently being offered in a pair of models based on its communication capabilities. The Bluetooth version, which is equipped with a Bluetooth module, is suitable for individual or team use; whereas the 2.4G version, which features two 2.4G wireless modules, is intended for the classroom. Aside from that, each kit consists of a chassis, two motors, an ultrasonic sensor, a line follower, a remote controller, a buzzer, some RGD LEDs, an mCore, and a few other electronic components. mBot can be powered by either a rechargeable lithium battery or four-1.5V AA batteries.

mbloc-e1448894784212

“We designed specially two available wireless communication instead of wired USB cable, so users can enjoy wireless programming to control robots without the limit of USB cable,” the team explains. “The chassis is compatible with Lego and Makeblock parts. And you can use on-hand Raspberry Pi or standard Arduino boards to learn more about electronics or bring kid’s more ideas to life.”

Not only did it garner more than $285,00 from 2,500-plus backers on Kickstarter earlier this year, Makeblock’s mBot has now become a member of the growing Arduino AtHeart program.

Watch this Arduino-controlled, autonomous robot swim underwater


This robot is fincredible!


A team from the Control Systems and Robotics Laboratory at the Technological Educational Institute of Crete has developed a bio-inspired, fin-propelled robot that can swim underwater.

CUlCMR6UEAEEG-u

Each fin is comprised of three individually actuated fin rays, which are interconnected by an elastic membrane. An Arduino Mega (ATmega2560) at its core runs custom real-time firmware that implements two Central Pattern Generator (CPG) networks to produce the undulatory motion profile for the robot’s fins, through which propulsion is achieved.

Fin

The prototype, which is fully untethered and energetically autonomous, also integrates an IMU/AHRS for navigation purposes, a Bluetooth module for wireless communication and a camera to capture underwater video. This footage includes experiments conducted in a lab’s test tank to investigate closed loop motion control strategies, as well as clips from actual sea trials. The robot is powered by a 7.4V LiPo battery.