Tag Archives: Rob Valiton

Video: Rob Valiton discusses the future of automotive at CES 2015


The car of the future could have a curved center display with tons of real estate for driver information and entertainment. 


It’s no surprise that automotive technology has emerged as an integral component of our digital lifestyle, as more and more consumers are looking to bring their mobile devices seamlessly into their vehicles. During CES 2015, ARMdevices.net had the chance to catch up with Rob Valiton, Atmel Senior Vice President & General Manager, to discuss the connected car — most notably, the next generation of infotainment user interfaces.

10929927_1014246888592481_347934713395376436_n

With up to a hundred million lines of code, at least 30 MCU-controlled devices — and some with as many as 100 — the vehicle is the ideal application to bring smart, connected devices in the era of the Internet of Things (IoT). Not only will these automobiles be packed with futuristic functionality ranging from navigation and parking assistance to diagnosis and road conditions, they will become much more intuitive and integrated with smartphone-like interfaces. In order to provide this, the car of tomorrow will feature a curved center console display offering a large amount of real estate for information to drivers. And, the newly-announced AvantCar 2.0 will make this possible.

Luckily, the AvantCar 2.0 brings advanced connectivity into the vehicle through an advanced HMI console connected to a concept car highlighting car access, car networking, MCUs, audio-over-Ethernet, MHL support and security technologies. Focusing on user requirements, the fully-functional console concept boasts curved touchscreens using maXTouch touchscreen controllers and XSense flexible touch sensors, as well as Atmel’s QTouch with proximity sensing, and LIN networking for ambient lighting controls.

MaXTouch S targets larger auto touchscreens

Atmel has confirmed that two new maXTouch touchscreen controllers were recently certified for use in next-gen automobiles. The mXT1188S is optimized for touchscreens up to 12 inches, while the mXT1664S is targeted at touchscreens up to 14 inches.

Both touchscreen controllers are optimized for single-layer shieldless sensor designs in automotive center consoles, navigation systems, radio interfaces and rear-seat entertainment systems. 

Meanwhile, a single-layer shieldless sensor design eliminates additional screen layers, effectively delivering improved light transparency. This results in lower power consumption, along with an overall lower system cost for the manufacturer.

The above-mentioned maXTouch controllers are AEC-Q100 compliant and designed for high reliability in harsh environments. They also offer glove support and improved moisture resistance – two key requirements for touch screen use in vehicles.

“The new automotive-qualified maXTouch controllers further strengthen Atmel’s automotive market position enabling more touchscreens in the car to hit the streets,” said Rob Valiton, Senior Vice President and General Manager, Automotive, Aerospace and Memory Business Units.

“We are also making in-car systems with capacitive touchscreens more accessible by enabling a shieldless single-layer touch sensor, which significantly reduces the total system cost. [Simply put], Atmel’s maXTouch controllers deliver superior touch performance, multi-touch, faster response times, more precise touches, robust operation and lower power consumption for an excellent user experience.”

To help accelerate design, Atmel is currently offering the EVK-MXT1664SAT-A evaluation kit, which includes an mXT1664S touch controller that interfaces with a 10.1-inch sensor (with an aspect ratio of 16:9).

 It should be noted that samples of the mXT1664S-A and mXT1188S-A in LQFP144 packages are available now, while devices in the PPAP packages will ship in June 2014 with volume production by July 2014.

Interested in learning more about Atmel automotive-qualified touch solutions? You can check out our official product page here.

Atmel’s Rob Valiton talks automotive

Rob Valiton, Senior VP and General Manager at Atmel, was recently interviewed by Alix Paultre of Power Systems Design.

During the podcast – which can be heard here – the two spoke about various issues surrounding automotive systems and the multiple, often conflicting challenges involved in designing for the application space.

The interview was conducted in the midst of CES 2014, shortly after Atmel officially unveiled its AvantCar curved touch screen console concept. 

The fully functional console features two large curved touchscreen displays – without mechanical buttons. Instead, the touchscreens integrate capacitive touch buttons and sliders, allowing users to navigate general applications typically found within an automotive center console.

As we’ve previously discussed on Bits & Pieces, Atmel’s extensive automotive portfolio encompasses a wide range of products including body electronics, networking and access systems, as well as engine, lighting and entertainment components.

 More specifically, our components are designed to fit small footprints, consume very little power and operate in high temperature and electromagnetic environments. To be sure, Atmel’s highly integrated designs can help save manufacturers significant component costs and months of development, integration and prototype time.

“Atmel’s broad product portfolio ranges from low-cost, entry level devices to advanced, highly integrated ICs with a broad range of functionalities, extensive connectivity, refined interfaces and strong security,” and Atmel engineering rep told Bits & Pieces. “Our products are designed in state-of-the-art BCDMOS, BDC-on-SOI, or non-volatile CMOS technologies and meet strict automotive qualification standards.”

Interested in learning more about Atmel’s automotive portfolio? You can check out our automotive-qualified category breakdown below:

The future of embedded automotive technology

Rob Valiton, senior VP and general manager, Automotive, Aerospace and Memory Business Units, Atmel Corporation, recently participated in an EE Catalog panel discussion about the future of embedded automotive technology.

According to Valiton, there is a wide variety of of technology that will continue to find its way into in-vehicle infotainment (IVI) systems – with capacitive touchscreens projected to be one of the fastest-growing spaces.

“The current dominant touchscreen technology in automotive is resistive. However, resistive technology does not allow consumers to interact with their car the way they interact with their smartphone, tablet and Ultrabook. The superior user interface, including common gesture recognition utilizing pinch/zoom and swiping motions is enabled by the adoption of capacitive technology,” he explained.

“Some newer features such as hover and proximity may also have the potential to create a less-distracted user environment than what exists today. Hover and proximity can be used in combination to ensure that the drivers’ eyes stay on the road for as long as possible and changing basic setting does not require several menu changes.”

In addition, Valiton noted that there are a number of standards which should be (further) unified to accelerate the IVI experience between on-board systems and connectable consumer products, with standards ranging from security and software considerations, to technology such as Bluetooth and Wi-Fi.

“Standards identified by technology standards bodies, such as the Bluetooth SIG or Wi-Fi Alliance, are required in order to unify the IVI experience on-board, specifically in relation to consumer products. These are required to ensure a smooth and seamless connection, as well as a positive experience for the end user,” he said.

“Firmware specifications are identified within a car to ensure connectivity is established flawlessly. [Plus], continued development of standards such as those being developed by the Connected Car Consortium will ensure that drivers can continue to control their devices using existing in-vehicle equipment. Of course, software considerations are also important. Since the infotainment lifecycle of an automobile is typically much longer than in the home, future cars must consider software standards along with the ability to upgrade.”

Valiton also pointed out that there are a number of technologies required to connect a car to the roadway and municipal infrastructure, along with vehicle-to-vehicle communications.

“[Such technology] requires a microcontroller (MCU), numerous sensors, a connectivity solution which can range from Wi-Fi such as 802.11p, GPS and 3G or 4G networks and security. The combination allows cars to connect to roadway and municipal infrastructures such as Fastrak, toll payment or Onstar security systems—all of which are connected to terrestrial and/or wireless connectivity,” he said.

“Clearly, security in automobiles is very important. Remember, we are all used to having virus protection readily available on our PCs, but are unlikely to think that much about how secure our software is in the modern automobile. Until now, the software has been part of a closed system and not subject to hacking. With the new V2V and V2X systems, we will need technology to ensure secure firmware updates and prevent hackers from communicating with unsuspecting drivers and their vehicles.”

Last, but certainly not least, Valiton commented on the future of self-driving cars, citing a recent ORC International survey that claimed only 18 percent of consumers would consider buying a self-driving car.

“Despite this survey, we believe consumers do not have a full understanding of self-driving cars. There are a number of technologies today that are baby steps towards a self-driving car (think automatic braking),” he explained. “One example is the safe park, where the vehicle parks itself. Another example is autopilot, a system used to guide a vehicle without assistance from a person, developed in 1912. Autopilots are used in aircraft, boats (known as self-steering gear), spacecraft, missiles and other vehicles.”

Similarly, an aircraft autopilot still requires human intervention—a pilot and a co-pilot—to ensure that if anything is amiss, they can be sure to steer the plane to safety.

“With self-driving cars, drivers will have the option to set the car in drive and not worry about a long trip or traffic. Similar to cruise control, the self-driving car can be turned off or if there is an emergency, the driver can still have full control of the car,” he added.

The car-to-x system warns of road works, congestion, obstacles and dangerous weather (courtesy Daimler).

“However, with strict automotive standards currently in place, to make this idea a reality, hardware and software must work closely together to achieve a safe and reliable self-driving car and one that is not hackable. Embedded technologies such as microcontrollers, sensors and touch solutions, encryption and even technologies such as 3D scanning are already in place to enable an autonomous vehicle. We are ready for self-driving cars; the real question is whether both manufacturers and drivers are ready to embrace it.”

Interested in learning more about Atmel’s comprehensive automotive lineup? You can check out our full automotive portfolio here.