Tag Archives: RISC

Atmel celebrates 50 billion with ARM

ARM – which employs over 2,000 people around the globe – has billions of RISC-based processors in the wild and powers approximately 95% of the world’s smartphones. Recently, the British company marked a major milestone: 50 billion ARM-powered chips shipped.

Commenting on the milestone, Reza Kazerounian, Senior Vice President of Microcontrollers at Atmel, noted that ARM helps embedded developers significantly accelerate the development cycle by offering access to standard cores and an extensive ecosystem, including software and reference designs.

Kazerounian also said the next 100 billion chips will likely be led by intelligent connectivity, primarily in the context of the Internet of Things (IoT).

As we’ve previously discussed on Bits & Pieces, Atmel offers an extensive portfolio of microcontrollers (MCUs) and microprocessors (MPUs) based on the world’s most popular 8- and 32-bit architectures: Atmel AVR and ARM. Indeed, Atmel’s two decades of microcontroller leadership and innovation include many industry-firsts:

  • The first Flash microcontroller, the first ARM7-based 32-bit Flash microcontroller
  • The first 100nA microcontroller with RAM retention
  • The first ARM9-based Flash microcontroller

“In order to simplify the embedded design process, we’ve meticulously built a robust ecosystem around our ARM microcontrollers,” an Atmel engineering rep told Bits & Pieces. ”Meaning, Atmel offers a wide range of software tools and embedded software that support leading operating systems, along with low-cost evaluation kits.”

In addition, Atmel’s flexible and highly integrated ARM-based MCUs are designed to optimize system control, user interface (UI) management and ease of use. That’s why our ARM Cortex-M3 and M4 based architectures share a single integrated development platform (IDP): Atmel Studio 6. This platform offers time-saving source code with more than 1,600 example projects, access to debuggers/simulators, integration with Atmel QTouchtools for capacitive touch applications and the Atmel Gallery online apps store where embedded software extensions can be downloaded.

Meanwhile, Atmel ARM-based MPUs range from entry-level devices to advanced highly-integrated devices with extensive connectivity, refined interfaces and ironclad security.

“Whether you are working on new, existing or legacy designs, a wide range of Atmel ARM-based devices provides the latest features and functionality. These devices also feature the lowest power consumption, a comprehensive set of integrated peripherals and high-speed connectivity,” the engineering rep added.

Interested in learning more about Atmel’s extensive ARM portfolio? You can check out our ARM MCUs here and our ARM MPUs here.

Process instruments packing Atmel tech

Process instruments employ a variety of sensors and methods to precisely measure process variables, such as temperature, pressure, level and flow.

Clearly, power consumption in active mode is critical for these products, as most field instruments are powered via a 4-20mA current loop interface, which significantly limits power budgets. In addition, process instruments should be capable of operating in hazardous areas.

Atmel’s versatile portfolio of microcontrollers (MCUs) can be used by manufacturers and engineers to design a wide range of industrial process instruments. Perhaps most importantly, our 32-bit microcontrollers are capable of operating down to 1.62V and achieving sub 1mW/DMIPS power consumption figures. In addition, process instruments often operate the microcontroller at low frequencies to reduce power consumption, which is why Atmel optimizes Flash read accesses for such scenarios.

“Both the Atmel AVR 32-bit microcontroller and the Atmel ARM Cortex-M3 processor-based SAM3 family provide modern and efficient RISC architectures, supporting more complex signals. Atmel’s Embedded DSP functionalities (MAC, saturating arithmetic) and FPU, along with middleware libraries to support them, considerably simplify signal conditioning,” an Atmel engineering rep told Bits & Pieces.

processinstrumentsdiagram

“Plus, complex signal algorithms, field bus or industrial Ethernet support, functional safety test routines, and multi-language menus, require increasingly large embedded Flash support. And that is why we offer 32-bit microcontrollers with embedded Flash up to 512KB. Atmel MCUs also integrate dedicated hardware mechanisms to support the implementation of the IEC61508 safety standard.”

In terms of wireless communications, Atmel’s wireless microcontroller lineup provides the required hardware for engineers to build products compatible with the popular Wireless HART protocol. Meanwhile, Atmel’s best-in-class RF properties help increase range and make RF links more robust, yet highly efficient.

“In short, Atmel’s SAM3, SAM7 and the AVR UC3 32-bit families deliver a unique combination of low power and excellent signal processing capabilities, as well as low power consumption, efficient signal processing (DSP and FPU), wide Flash size availability, sensor element and field bus connection, capacitive touch and wireless microcontrollers,” the engineering rep added.

Interested in learning more about Atmel’s process instruments portfolio? Be sure to check out our extensive device breakdown here.

Tactilu is a bracelet for remote tactile communication

Tactilu can best be described as a bracelet for remote tactile communication. Designed by the panGenerator collective in partnership with Cheil, the Tactilu bracelet is capable of transmitting a “touch” sensation between two individuals.

“Tactilu is based on technologies like flexinol wire for actuation of touch and QTC  (quantum tunneling composite) on the touch sensor layer,” the Tactilu crew wrote in a blog post published on the Creative Applications Network.

“The bracelet is comprised of two elements, one for sending data and the other for receiving, [with a] touch sensor located on the upper side of the bracelet [that] converts swipes into tactile/haptic motion on the receiving device.”

Tactilu is powered by Atmel’s ATmega328 MCU fitted into an Arduino Pro Mini. As previously discussed on Bits & Pieces, the high-performance Atmel 8-bit AVR RISC-based microcontroller executes powerful instructions in a single clock cycle, achieving throughputs approaching 1 MIPS per MHz.

Tactilu is currently in alpha. The next version expected to be approximately 50% slimmer, with the temporary textile strip replaced by casted polyurethane.