Tag Archives: Rad Tolerant MCU

The first-ever Rad Tolerant megaAVR is out of this world!


With billions of AVR chips already deployed throughout the world, it’s now time to take them into space!


This news may come as one small step for boards, one giant leap for Maker-kind: the ATmegaS128 has launched! Not only does Atmel’s first uC Rad Tolerant device share the popular features of the megaAVR family, this out-of-the-world MCU delivers full wafer lot traceability, 64-lead ceramic package (CQFP), space screening, space qualification according to QML and ESCC flow and total ionizing dose up to 30 Krad (Si) for space applications. What’s more, the ATMegaS128 is “latch up” immune thanks to a dedicated silicon process: SEL LET > 62.5Mev at 125°C, 8MHz/3.3V. SEU to heavy ions is estimated to 10-3 error/device/day for low Earth orbit applications.

space

With billions of commercial AVR chips widely deployed throughout the world, the new space-grade AVR family benefits from support of the Atmel Studio ecosystem and lets aerospace developers to the industrial-version of the ATmega to prototype their applications for a fraction of the cost. The latest board is available in a ceramic hermetic packaging and is pin-to-pin and drop-in compatible with existing ATmega128 MCUs, allowing flexibility between commercial and qualified devices, enabling faster-time-to-market and minimizing development costs. With this cost-effective approach and a plastic Hirel-qualified version, the ATmegaS128 can be also considered in more general aerospace applications including class A and B avionic critical cases where radiation tolerance is also a key requirement.

“With nearly three decades of aerospace experience, we are thrilled to bring one of our most popular MCU cores to space — the AVR MCU,” explained Patrick Sauvage, General Manager of Atmel’s Aerospace Business Unit. “By improving radiation performance with our proven Atmel AVR cores and ecosystem, the new ATmegaS128 provides developers targeting space applications a smaller footprint, lower power and full analog integration such as motor and sensor control along with data handling functions for payload and platform. We look forward to putting more Atmel solutions into space.”

Among its notable features, the space-ready MCU boasts high endurance and non-volatile memory, robust peripherals (including 8- and 16-bit timers/counters, six PWM channels, 8-channel, 10-bit ADC, TWI/USARTs/SPI serial interface, programmable watchdog timer and on-chip analog compactor), power-on reset and programmable brown-out detection, internal calibrated RC oscillator, external and internal interrupt sources, six sleep modes, as well as power-down, standby and extended standby.

maxresdefault

The STK600 starter kit and development system for the ATmegaS128 will provide users a quick start in developing code on the AVR with advanced features for prototyping and testing new designs. The recently-revealed AVRs are supported by the proven Atmel Studio IDP for developing and debugging Atmel | SMART ARM-based and AVR MCU applications, along with the Atmel Software Framework. Intrigued? Check out the uC Rad Tolerant device here.