Tag Archives: precision oscillator

Simply AVR: 8-bit ideas with Atmel

Vegard Wollan, co-inventor of AVR microcontroller (MCU) architecture, says AVR “was born from the combination of advanced computer science coupled with proven Flash memory manufacturing techniques.”

Indeed, AVR architecture offers both engineers and Makers robust performance, low power, high-speed, connectivity and easy system integration. Based on a single-cycle RISC engine that deftly combines a rich instruction set, AVR MCUs are capable of delivering close to 1 MIPS (Million Instructions Per Second) per megahertz – as they are optimized for minimum code size and maximum computing performance.

Perhaps most importantly, Atmel makes it possible to create smaller footprint designs, as our AVR MCUs offer a high level of integration with on-chip Flash, SRAM, EEPROM, pull-up resistors, precision oscillator, watchdog timer, brownout detector and GPIO/PWM (pulse-width modulation) pins for application use. Advanced on-chip analog capabilities include an internal temperature sensor, analog comparators, multiple 10-bit and 12-bit ADC (analog-to-digital converter) input channels and a programmable-gain analog amplifier.

On the low power side, Atmel has developed picoPower technology, which enables AVR microcontrollers to reduce power consumption in both sleep and active mode, thereby achieving the industry’s lowest power consumption with 500nA @ 1.8V with RTC running and 100nA with full SRAM retention.

In terms of software, AVR MCUs are designed with ease of use in mind, from peripherals to datasheets to tools. To be sure, we offer a high-quality, easy-to-use tool chain for the full range of our AVR families. Available for free, Atmel Studio enables code development in C or Assembly by providing cycle-accurate simulation – and integrating seamlessly with AVR starter kits, programmers, debuggers, evaluation kits and reference designs.

This makes AVR microcontrollers ideal for a broad range of applications including industrial control, ZigBee and RF, medical and utility metering, communication gateways, sensor control, white goods and portable battery-powered products. Last, but certainly not least, both Makers and developers can benefit from a robust community following of over 300,000 engineers, with AVR Freaks offering a centralized location where participants frequently interact with each other in various AVR MCU forums.