Tag Archives: mXT336S

Designing the future of touch with Atmel

Atmel CEO Steve Laub probably put it best when he told the Wall Street Transcript that touch is generally considered to be the preferred method for current-gen consumers to interface and interact with electronic devices.

“For the last three years, [Atmel has] been the world’s leading provider of mobile touch solutions, so our technology and products are changing the way people use and interact with electronic [devices],” Mr. Laub explained. “Our technology is also changing how they view the world and the ability to interact with the world.”

Indeed, Atmel has achieved a number of impressive milestones in the touch space over the last 6 months including:

XSense: A high-performance, highly flexible touch sensor which allows engineers to design devices with curved surfaces and even add functionality along product edges. Atmel is now positioned to ramp volume production for this revolutionary new tech.

Facilitating an uber-thin wireless touch interface: Cambridge Silicon Radio (CSR) developed an uber-thin wireless touch interface. The flexible interface, measuring less than 0.5 mm thick, turns any area into a touch surface for mobile devices and even desktops. To create the ultra-thin wireless touch surface, CSR partnered with Atmel and Conductive Inkjet Technology (CIT). More specifically, the device uses Atmel’s touch silicon tech to sense multiple contact points on a surface – and is therefore capable of offering a full touch surface or power optimized key detection.

Expanding the maXTouch auto lineup: In July, Atmel rolled out a new maXTouch family to facilitate single-layer shieldless designs in automotive center stacks, navigation systems, radio interfaces and rear seat entertainment platforms. The mXT336S is optimized for 7-inch touchscreens, while the mXT224S targets smaller touchscreens and tablets.

Powering the Samsung Galaxy S4 Mini’s touchscreen: Samsung selected Atmel’s maXTouch mXT336S controller to power the touchscreen of its Galaxy S4 Mini.

Powering Samsung’s Galaxy S4: The Galaxy S4 is fitted with Atmel’s sensor hub management MCU (microcontroller unit) which collects and processes data from all connected sensors in real-time, optimizing multiple user experiences, such as gaming, navigation and virtual reality. In addition, the sensor hub MCU lowers the overall system power consumption via picoPower technology to prevent drain and enable longer battery life.

Driving Asus touchscreens: Asus selected Atmel’s mXT2952T and mXT1664T controllers to drive the touchscreens of multiple new tablets and Ultrabooks – including the Zenbook Infinity which is based on Intel’s Haswell processor.

Enabling ‘in-cell’ touch for custom LCD designs: AndersDX introduced In-Cell Touch technology custom liquid crystal display (LCD) installations targeted at low- to high-volume consumer manufacturing. Instead of a touch sensor bonded onto the LCD display, each In-Cell touch key is embedded directly into the LCD cell. The LCD ITO pattern is then designed to match individual touch key symbols. An Atmel Q Touch sensor IC integrated into the display electronics controls up to four touch keys per application.

Outdoors with Ocular: Atmel’s maXTouch S trekked to the great outdoors with Ocular LCD’s PCAP touch panels. Designed specifically for outdoor and marine applications, these Crystal Touch panels are non-birefringent and immune to false touches caused by water spray and droplets.

Optimizing charge cycles and battery life

Bits & Pieces has been on a roll this week with an automotive theme in honor of the latest additions to Atmel’s touch family: the mXT336S and mXT224S. In this article, we’re going to take a closer look at how Atmel optimizes automotive charge cycles and battery life with its MCUs.

As automotive enthusiasts know, Li-ion technology is currently the first choice for modern high-performance batteries. To be sure, Li-ion batteries are up to 30 percent smaller and 50 percent lighter than conventional NiMH batteries – yet manage to store significantly more energy.

However, while the batteries do offer concrete advantages in terms of size, weight, recharge speed and resistance to memory effects, Li-ion has a higher cost compared to other battery types. Of course, this can definitely be improved by using a battery management system like Atmel’s which optimizes battery performance.

“Our Li-ion battery management solution offers high accuracy analog measurement functions in combination with efficient active cell balancing ensuring optimum usage of battery capacity,” an Atmel engineering rep told Bits & Pieces. “Specifically, the megaAVR, ATmega32HVE2 and ATmega64HVE2 microcontrollers (MCUs) can be used to improve the performance and longevity of 12V standard lead-acid batteries.”

As the engineering rep notes, the above-mentioned MCUs are designed for intelligent battery sensor applications – with the devices determining the state of charge and state of health for 12V standard lead-acid batteries by measuring the battery voltage, current and temperature.

“For cars with idle-stop-go function, this feature is mandatory to retain sufficient battery energy for a guaranteed engine start,” the engineering rep added. “Combined with the Atmel ATA6870 Li-ion battery monitor IC, it forms an ideal system solution for replacing 12V standard lead-acid batteries with Li-ion batteries.”

Additional key features of an Atmel-powered battery management system and components include:

  • Active balancing – The industry’s first to feature active cell balancing for high cell count Li-ion batteries to prevent energy loss.
  • Maximum safety – Highest accuracy due to simultaneous cell voltage measurement of the cells in the entire battery stack leading to precise state-of-charge and state-of health calculations.
  • Smart sensing – Allows engineers to measure the battery voltage, current and temperature with up to 18-bit accuracy.
  • Valuable development tools – PC-controlled development kits help devs easily build a battery management system and get the most of the battery management devices.

Interested in learning more? Detailed information about using Atmel’s powered system can be found here.

Atmel expands maXTouch auto lineup

Atmel has rolled out a new maXTouch family to facilitate single-layer shieldless designs in automotive center stacks, navigation systems, radio interfaces and rear seat entertainment platforms.

atmelmXT224S_mXT336

“The mXT336S is optimized for 7-inch touchscreens, while the mXT224S targets smaller touchscreens and tablets,” said Stephan Thaler, Atmel Marketing Director for Automotive Touch Products. “Both are AEC-Q100-compliant and fully automotive qualified.”

Dedicated firmware and a high signal-to-noise ratio makes these devices ideally suited for very noisy environments. Since only a high signal-to-noise ratio enables detection of touches with a “gloved” finger, the devices provide full support for gloved hand operation on automotive touchscreens.

As Thaler notes, conventional touch controllers are unable to handle LCD noise, so an additional shield layer is typically required to prevent noise coupling.

“However, thanks to the [optimized] noise handling and filtering capabilities of our new automotive- qualified maXTouch devices, shields are no longer required, and designers can use single-layer sensors instead of dual or triple layers, which are typical in many current applications,” he explained.

“By eliminating an additional layer, designers have a thinner stack which reduces the overall system complexity, lowering the overall cost and power consumption, which results in higher yields during production.”

Indeed, the mXT336S/mXT224S devices support touch detection, up to 10 simultaneous touches, touch size reporting, single- and dual-touch gesture calculation, communication of X/Y positions, gesture support and the ability to eliminate unintended touches. Users can also perform multi-touch gestures (pinch, stretch, etc.), while unintended touches are rejected, such as a resting hand on the screen. Simply put, the above-mentioned key features help bring the smartphone experience into contemporary cars.

Samples of the automotive-qualified mXT336S and mXT224S touch controllers are currently available in TQFP64 packages, while demo kits for both devices can also be ordered to support design-in and shorten time-to-market.