Tag Archives: Microduino Core+

Build your own Pebble Smartwatch


Why buy the latest smartwatch when you can make one yourself with off-the-shelf components and breakout boards? 


Despite the ongoing craze for wearable technology, most notably smartwatches, a number of young Makers are finding that can sometimes be a bit out of their price range. Rather than having to tirelessly scalvage funds and spend their savings, tinkerers like Jonathan Cook are electing to create their own devices. The aptly named Open-Source SmartWatch combines readily available breakout boards, careful soldering and a 3D-printed frame to make a one-of-a-kind timepiece that displays notifications from your smartphone, not to mention is easily customizable in function and pleasing to the eye. Aside from already being crowned winner of last year’s Arduino Challenge and having garnered “Maker of Merit” ribbons at Maker Faires, Cook recently featured his DIY accessory on MAKE: Magazine.

page_1_complete

As the Maker notes, the watch design is pretty straightforward, consisting of four major components housed in a 3D-printed case: a battery charging circuit, vibrating motor for silent alerts, a programmable Microduino Core+ (ATmega644PA/ATmega1284P) with power regulation and BLE connectivity, and an OLED display with push-buttons.

Microduino

“Breadboarding the project is a snap. Wiring it into a small enclosure meant for the wrist is quite another matter. Break out your fine-point soldering iron and follow these complete instructions.” As for its programmable core, Cook connected the Microduino board to a programming port, a BLE chip for communicating with a wearer’s mobile device, and a voltage regulating circuit.

MicroduinoPLus

“A 3.7V 500mAh LiPo battery is wired to a JST connector and a two-position switch. Switched to the right, the circuit is in battery mode. Switched left, it’s ready for LiPo charging via the JST connector.”

watch_2

Meanwhile, the Open-Souce SmartWatch’s vibrator circuit is comprised of a diode, 1K and 33Ω resistors, capacitor, NPN transistor, and motor. The circuit is then connected to the megaAVR based Microduino, which enables the device to buzz the wrist for an incoming call or alerts. Speaking of which, in addition to the typical time and date functionality as seen on any watch, Cook has sought out to develop an interface that any smartwatch wearer would want such as email access, Facebook notifications, Twitter updates, among a number of other features. Rounding out the design, the Maker implemented an OLED screen and a pair of tiny LEDs that are wired to seven of the digital pins on the ‘duino.

os_smartwatch_v2

Those interested in learning more about the 3D-printed smartwatch can access a detailed step-by-step breakdown of the build here.