Tag Archives: LIN

Are you designing for the latest automotive embedded system?


Eventually, self-driving cars will arrive. But until then, here’s a look at what will drive that progression.


The next arrow of development is set for automotive

We all have seen it. We all have read about it in your front-center technology news outlets. The next forefront for technology will take place in the vehicle. The growing market fitted with the feature deviation trend does not appeal to the vision of customizing more traditional un-connected, oiled and commonly leveraged chassis vehicles of today. Instead, ubiquity in smartphones have curved a design trend, now mature while making way for the connected car platform. The awaiting junction is here for more integration of the automotive software stack.  Opportunities for the connected car market are huge, but multiple challenges still exist. Life-cycles in the development of automotive and the mobile industry are a serious barrier for the future of connected cars. Simply, vehicles take much longer to develop than smartphones other portable gadgetry. More integration from vendors and suppliers are involved with the expertise to seamlessly fit the intended blueprint of the design. In fact, new features such as the operating system are becoming more prevalent, while the demand for sophisticated and centrally operated embedded systems are taking the height of the evolution. This means more dependence on integration of data from various channels, actuators, and sensors — the faculty to operate all the new uses cases such as automatic emergency response systems are functionality requiring more SoC embedded system requirements.

A step toward the connected car - ecall and how it works

What is happening now?

People. Process. Governance. Adoption. Let’s look at the similarities stemmed from change. We are going to witness new safety laws and revised regulations coming through the industry. These new laws will dictate the demand for connectivity. Indeed, drawing importance this 2015 year with the requirement set by 2018, European Parliament voted in favor of eCall regulation. Cars in Europe must be equipped with eCall, a system that automatically contacts emergency services directing them to the vehicle location in the event of an emergency. The automotive and mobile industries have different regional and market objectives. Together, all the participants in both market segments will need to find ways to collaborate in order to satisfy consumer connectivity needs. Case in point, Chrysler has partnered with Nextel to successfully connect cars like their Dodge Viper, while General Motors uses AT&T as its mobile development partner.

General Motors selected AT&T as its mobile partner

What is resonating from the sales floor and customer perspective?

The demand is increasing for more sophistication and integration of software in the cabin of cars. This is happening from the manufacturer to the supplier network then to the integration partners — all are becoming more engaged to achieve the single outcome, pacing toward the movement to the connected car. Stretched as far as the actual retail outlets, auto dealers are shifting their practice to be more tech savvy, too. The advent of the smart  vehicle has already dramatically changed the dealership model, while more transformation awaits the consumer.

On the sales floor as well as the on-boarding experience, sales reps must plan to spend an hour or more teaching customers how to use their car’s advanced technology. But still, these are only a few mentioned scenarios where things have changed in relation to cars and how they are sold and even to the point of how they are distributed, owned, and serviced. One thing for certain, though, is that the design and user trend are intersecting to help shape the demand and experience a driver wants in the connected car. This is further bolstered by the fast paced evolution of smartphones and the marketing experiences now brought forth by the rapid adoption and prolific expansion of the mobile industry tethered by their very seamless and highly evolved experiences drawn from their preferred apps.

Today, customer experiences are becoming more tailored while users, albeit on the screen or engaged with their mobile devices are getting highly acquainted with the expectation of “picking up from where I left off” regardless of what channel, medium, device, or platform.  Seamless experiences are breaking through the market.  We witness Uber, where users initialize their click on their smartphone then follows by telemetry promoted from Uber drivers and back to the users smart phone.  In fact, this happens vis versa, Uber driver’s have information on their console showing customer location and order of priority.  Real life interactions are being further enhanced by real-time data, connecting one device to draw forth another platform to continue the journey.  Transportation is one of the areas where we can see real-time solutions changing our day-to-day engagement.  Some of these are being brought forth by Atmel’s IoT cloud partners such as PubNub where they leverage their stack in devices to offer dispatch, vehicle state, and geo fencing for many vehicle platforms.  Companies like Lixar, LoadSmart, GetTaxi, Sidecar, Uber, Lyft are using real-time technologies as integral workings to their integrated vehicle platforms.

The design trajectory for connected cars continues to follow this arrow forward

Cars are becoming more of a software platform where value chain add-ons tied to an ecosystem are enabled within the software tethered by the cloud where data will continue to enhance the experience. The design trajectory for connected cars follow this software integration arrow.  Today, the demand emphasizes mobility along with required connectivity to customer services and advanced functions like power management for electric vehicles, where firmware/software updates further produce refined outcomes in the driver experience (range of car, battery management, other driver assisted functionalities).

Carmakers and mobile operators are debating the best way to connect the car to the web. Built-in options could provide stronger connections, but some consumers prefer tethering their existing smartphone to the car via Bluetooth or USB cable so they can have full access to their personal contacts and playlists. Connected car services will eventually make its way to the broader car market where embedded connections and embedded systems supporting these connections will begin to leverage various needs to integrate traditional desperate signals into a more centrally managed console.

Proliferation of the stack

The arrow of design for connected cars will demand more development, bolstering the concept that software and embedded systems factored with newly-introduced actuators and sensors will become more prevalent. We’re talking about “software on wheels,” “SoC on wheels,” and “secured mobility.”

Design wise, the cost-effective trend will still remain with performance embedded systems. Many new cars may have extremely broad range of sensor and actuator‑based IoT designs which can be implemented on a single compact certified wireless module.

The arrow for connected cars will demand more development bolstering the concept that software and embedded systems factored with newly introduced actuators & sensors will become more prevalent; “software on wheels”, “SoC on wheels” and “secured mobility”.

Similarly, having fastest startup times by performing the task with a high-performance MCU vs MPU, is economic for a designer. It can not only reduce significant bill of materials cost, development resources, sculpted form factor, custom wireless design capabilities, but also minimize the board footprint. Aside from that, ARM has various IoT device development options, offering partner ecosystems with modules that have open standards. This ensures ease of IoT or connected car connectivity by having type approval certification through restrictive access to the communications stacks.

Drivers will be prompted with new end user applications — demand more deterministic code and processing with chips that support the secure memory capacity to build and house the software stack in these connected car applications.

Feature upon feature, layer upon layer of software combined with characteristics drawn from the events committed by drivers, tires, wheels, steering, location, telemetry, etc. Adapted speed and braking technologies are emerging now into various connected car makes, taking the traditional ABS concept to even higher levels combined with intelligence, along with controlled steering and better GPS systems, which will soon enable interim or cruise hands-free driving and parking.

Connected Car Evolution

Longer term, the technological advances behind the connected car will eventually lead to self-driving vehicles, but that very disruptive concept is still far out.

Where lies innovation and change is disruption

Like every eventual market disruption, there will be the in-between development of this connected car evolution. Innovative apps are everywhere, especially the paradigm where consumers have adopted to the seamless transitional experiences offered by apps and smartphones. Our need for ubiquitous connectivity and mobility, no matter where we are physically, is changing our vehicles into mobile platforms that want us users to seamlessly be connected to the world. This said demand for connectivity increases with the cost and devices involved will become more available. Cars as well as other mobility platforms are increasingly becoming connected packages with intelligent embedded systems. Cars are offering more than just entertainment — beyond providing richer multimedia features and in-car Internet access.  Further integration of secure and trusted vital data and connectivity points (hardware security/processing, crypto memory, and crypto authentication) can enable innovative navigation, safety and predictive maintenance capabilities.

Carmakers are worried about recent hacks,  especially with issues of security and reliability, making it unlikely that they will be open to every kind of app.  They’ll want to maintain some manufactured control framework and secure intrusion thwarting with developers, while also limiting the number of apps available in the car managing what goes or conflicts with the experience and safety measures.  Importantly, we are taking notice even now. Disruption comes fast, and Apple and others have been mentioned to enter this connected car market. This is the new frontier for technological equity scaling and technology brand appeal. Much like what we seen in the earlier models of Blackberry to smartphones, those late in the developmental evolution of their platforms may be forced adrift or implode by the market.

No one is arguing it will happen. Eventually, self-driving cars will arrive.  But for now, it remains a futuristic concept.

What can we do now in the invention, design and development process?

The broader output of manufactured cars will need to continue in leveraging new designs that take in more integration of traditional siloed integration vendors so that the emergence of more unified and centrally managed embedded controls can make its way. Hence, the importance now exists in the DNA of a holistically designed platform fitted with portfolio of processors and security to take on new service models and applications.

This year, we have compiled an interesting mixture of technical articles to support the development and engineering of car access systems, CAN and LIN networks, Ethernet in the car, capacitive interfaces and capacitive proximity measurement.

In parallel to the support of helping map toward the progress and evolution of the connected car, a new era of design exists. One in which the  platform demands embedded controls to evenly match their design characteristics and application use cases. We want to also highlight the highest performing ARM Cortex-M7 based MCU in the market, combining exceptional memory and connectivity options for leading design flexibility. The Atmel | SMART ARM Cortex-M7 family is ideal for automotive, IoT and industrial connectivity markets. These SAM V/E/S family of microcontrollers are the industry’s highest performing Cortex-M microcontrollers enhancing performance, while keeping cost and power consumption in check.

So are you designing for the latest automotive, IoT, or industrial product? Here’s a few things to keep in mind:

  • Optimized for real-time deterministic code execution and low latency peripheral data access
  • Six-stage dual-issue pipeline delivering 1500 CoreMarks at 300MHz
  • Automotive-qualified ARM Cortex-M7 MCUs with Audio Video Bridging (AVB) over Ethernet and Media LB peripheral support (only device in the market today)
  • M7 provides 32-bit floating point DSP capability as well as faster execution times with greater clock speed, floating point and twice the DSP power of the M4

We are taking the connected car design to the next performance level — having high-speed connectivity, high-density on-chip memory, and a solid ecosystem of design engineering tools. Recently, Atmel’s Timothy Grai added a unveiling point to the DSP story in Cortex-M7 processor fabric. True DSPs don’t do control and logical functions well; they generally lack the breadth of peripherals available on MCUs. “The attraction of the M7 is that it does both — DSP functions and control functions — hence it can be classified as a digital signal controller (DSC).” Grai quoted the example of Atmel’s SAM V70 and SAM V71 microcontrollers are used to connect end-nodes like infotainment audio amplifiers to the emerging Ethernet AVB network. In an audio amplifier, you receive a specific audio format that has to be converted, filtered, and modulated to match the requirement for each specific speaker in the car. Ethernet and DSP capabilities are required at the same time.

“The the audio amplifier in infotainment applications is a good example of DSC; a mix of MCU capabilities and peripherals plus DSP capability for audio processing. Most of the time, the main processor does not integrate Ethernet AVB, as the infotainment connectivity is based on Ethernet standard,” Grai said. “Large SoCs, which usually don’t have Ethernet interface, have slow start-up time and high power requirements. Atmel’s SAM V7x MCUs allow fast network start-up and facilitate power moding.”

Atmel has innovative memory technology in its DNA — critical to help fuel connected car and IoT product designers. It allows them to run the multiple communication stacks for applications using the same MCU without adding external memory. Avoiding external memories reduces the PCB footprint, lowers the BOM cost and eliminates the complexity of high-speed PCB design when pushing the performance to a maximum.

Importantly, the Atmel | SMART ARM Cortex-M7 family achieves a 1500 CoreMark Score, delivering superior connectivity options and unique memory architecture that can accommodate the said evolve of the eventual “SoC on wheels” design path for the connected car.

How to get started

  1. Download this white paper detailing how to run more complex algorithms at higher speeds.
  2. Check out the Atmel Automotive Compilation.
  3. Attend hands-on training onboard the Atmel Tech on Tour trailer. Following these sessions, you will walk away with the Atmel | SMART SAM V71 Xplained Ultra Evaluation Kit.
  4. Design the newest wave of embedded systems using SAM E70, SAM S70, or SAM V70 (ideal for automotive, IoT, smart gateways, industrial automation and drone applications, while the auto-grade SAM V70 and SAM V71 are ideal for telematics, audio amplifiers and advanced media connectivity).

IMG_3659

[Images: European Commission, GSMA]

Atmel and IHR driving innovation in automotive electronics

Atmel has just announced a collaboration with IHR, a worldwide partner in the automotive industry, to further support the innovation of Local Interconnect Network (LIN) systems. This collaboration leverages IHR’s LIN configuration tools with Atmel’s industry-leading embedded solutions to improve application integration, time-to-market and to minimize licensing costs.

banner_lin

Atmel’s collaboration with IHR enables Atmel to provide manufacturers with a LIN-compliant evaluation environment to further streamline development, bringing the best of automotive engineering faster to market. IHR’s solutions support several Atmel technologies including the megaAVRtinyAVR and XMega AVR families.

For those interested, a free demo version of the LIN drivers is now available for download via the IHR website and can be used for evaluation purposes. Upcoming new product series will be supported by IHR solutions as well.

“With nearly 30 years of experience working with the automotive industry, Atmel has spurred the pervasive growth of electronic features in cars,” explained Giovanni Fontana, Atmel Automotive Applications Director. “Our collaboration with IHR will help our customers continue to build innovative electronic products in a cost-effective manner with improved integration and intuitive configuration capabilities.”

Atmel combines a unique blend of IVN products and embedded MCUs. AVR MCUs deliver the power, performance and flexibility to support a wide range of automotive applications. These small, yet powerful, advanced 8- and 32-bit AVR MCUs deliver the technical features, advanced architecture and dependable design ideal for an array of applications.

In what has become the industry’s largest, the Atmel LIN product portfolio includes stand-alone transceivers, system basis chips (SBC) which integrate a transceiver, a voltage regulator and often other functions as well as AVR MCU-based system-in-package (SiP) and application-specific (ASSP) devices.

“IHR is recognized for our proven LIN tools used by designers to create applications that automotive manufactures rely on as competitive differentiators,” said Rüdiger Kewitz, COO at IHR GmbH. “Together with Atmel, we offer a very compelling proposition for manufacturers to not only design next-generation embedded systems, but also to bring high-end applications to market through an amplitude of makes and models.”

Interested in learning more about Atmel’s LIN solutions? Additional information is available here. You can also browse through the Bits & Pieces archive on the topic.

All tiny AVR parts in a spreadsheet

I just made a spreadsheet of all the tinyAVR parts. All my pals love the MCU selector guide, but I have a lot of analog dinosaur buddies that prefer a spreadsheet to a web-based interface. You can sort the data and this spreadsheet has the filter box on the columns, so you can sort out things you care about and exclude the things you don’t. The spreadsheet fits on a 24-inch display, and you can print it out on a single B-sized sheet and use it as an infographic.

ATtinyAVR-product-line_2014-08-20

This screenshot shows how all the tinyAVR parts will fit on one 11×17 ledger-sized or B-sized sheet of paper.

I started with an Excel dump of the selector guide after adding every single parameter to the search. I then took all the tinyAVR parts, and rearranged the columns, throwing out the irrelevant ones. I also combined the automotive parts with the basic parts. That added two columns for automotive temp and automotive Vcc range. Adding 2 columns to remove 13 rows seemed like a good deal. The part name links to the product page on our website.

I made a column for each package. That took a long time. Semiconductor companies think of a part as the silicon die, with the package being almost irrelevant. We systems folk know the package might be the most important thing. I tried to put the smaller packages on the left, with those big ol’ DIP (dual-inline plastic) parts on the right side. There is a second sheet in the spreadsheet that shows all the parts by number and there I put the package size, in mm. In both sheets, the package name links to the definition page on our website.

ATtinyAVR-product-line_2014-08-20_sheet-2

The second sheet of the spreadsheet shows all the tinyAVR parts by number. I put the exact package size on this page.

Besides the packages and package size, I also spent a long time getting pricing. My buddy Wayne Yamaguchi requested this, and he is absolutely right, price is the most important spec of any part, and I hate when it takes 5 clicks to find it. These prices are a bit sketchy. All I did was click on the “Buy” link and select a handful of parts from each family, and then looked at the Digi-Key price, in 1000s. I put in the highest and lowest of the few I selected, but this is by no means scientific or dispositive, as the lawyers would say. What I should do is put the price in the “Package” column, so you know what the package is and what price we charge, but many parts are in the same package but have two Vcc ranges, so there is no unique way to encode this and keep the spreadsheet on one printable page. Maybe I can blow out the second page to show every orderable part number and its price and specs. Always time to do it over, never time to do it right.

The major thing I want to add is the OrCAD 9.2 footprint name for the packages. I am afraid to do this now, since we have all been burned by narrow-DIP/wide-DIP and narrow -SOIC/wide-SOIC and what pin numbering to use on SOT parts, so that will have to wait for next time. If anyone has a proven definitive list of the OrCAD footprints, please let me know. paul.rako[yeah, the at sign]atmel.com

You can highlight all the parts and use the “Data>Sort” function to order them any way you want. I did it by Flash memory size and part name. You can also use the little filter boxes on each column to include or exclude, or even put in a logical range with equal or less than or all the other things. Its not exactly grep or regular expressions, but it can get the job done helping you to find the right part.

Spreadsheet-filter-function

Excel filter boxes let you select just the parameters you care about.

I am told this spreadsheet works OK in Open Office/Libre. My pal Dave asked that any columns that are filtered be lit up red, but that takes a macro, and the VB macro may not work in Open Office, we are checking for that. Meanwhile, check there are 36 part families or that the little filter box does not have 3 pixels different to show the filter is on.

Microscopically-differerent-filter-icon

When you have filtered a column, it is almost impossible to tell, since the only indication is the icon makes this 3-pixel change.

Weasel weasel, CYA CYA, legal boilerplate—this is a hobby job, not an official Atmel document. If the selector guide had it wrong, it is wrong here too. I made my own mistakes too. And I already told you the pricing and the tiny1634 stuff was dicey. What I am hoping is that I can get some community support where you point out the errors, and tell me what to add. paul.rako[yeah, the at sign]atmel.com I also ask that you send this URL link to your pals, instead of just emailing the spreadsheet. That way the bosses will see you like this, and I can have the time to keep working on it.

Hans-Camenzind_tinyAVR-spreadsheet

If Hans Camenzind, the inventor of the 555 timer chip was still alive, he might have a copy of the tinyAVR spreadsheet up on his office wall. I miss Hans, at least he came to my Analog Aficionados party one year, before we lost him to the Grim Reaper.

 

Atmel looks back at Q1 2014 wins and launches

Yesterday, Atmel execs detailed the company’s Q1 2014 highlights. Key launches, collaborative projects and product wins spanned multiple markets, including:

Winning with maXTouch (smartphones) – LG’s G Pro 2, G2 Mini and L Series 3 L90; Verizon’s Lucid 3, Xiaomi’s RedRice 5.5″, Gionee’s Elife S5.5 and ZTE’s Grand S Lite.

Winning with maXTouch (Android and Windows 8 tablets) – Samsung’s Galaxy Tab 4 10.1,” Galaxy Tab 12.2,” Galaxy Note 12.2″ and HP’s EliteBook 1000 G2.

Collaborating with Corning – Developing ultra-thin, next-generation capacitive touchscreens using Gorilla Glass and XSense.

Working with Mentor GraphicsAccelerating development of next-gen IoT devices using Atmel’s ARM-based Cortex M3 and M4 based microcontrollers under the auspices of the Embedded Nucleus Innovate Program.

Launching maXTouch 1066T and 1068T – Extending product leadership in the large screen capacitive touch market with devices targeted at 7″ – 8.9″ high performance tablets.

Introducing the new automotive maXTouch S lineup – Targeting touchscreens up to 14″ in center consoles, navigation systems, radio interfaces and rear-seat entertainment systems.

Debuting the SmartConnect platform – Integrating Atmel’s ultra-low power microcontrollers (MCUs) and wireless connectivity solutions into turnkey solutions for the Internet of Things (IoT).

Introducing new low-power ARM Cortex M0+ microcontrollers (SAM D21, D10 and D11) – Offering Atmel’s peripheral event system, support for capacitive touch button, slider and wheel user interfaces, multiple serial communications modules, along with a full-speed USB interface, as well as additional pin and memory combinations.

Unveiling new $79 SAMA5D3 Xplained evaluation kit – Providing a low-cost, fast prototyping and evaluation platform for microprocessor-based design built around Atmel’s SAMA5D3 ARM Cortex-A5 processor-based MPU.

Xplaining 8-bit development– Offering a development board for Makers and engineers based on Atmel’s 8-bit AVR technology.

Launching the ATPL230A – Introducing a Power Line Communications (PLC) modem designed to implement the physical layer of the PRIME standard (Power Line Intelligent Metrology Evolution).

Rolling out Atmel Studio 6.2 – Upgrading the popular integrated development environment for Atmel AVR and ARM based microcontrollers.

Ramping up with LIN – Extending Atmel’s automotive in-vehicle networking leadership position with the launch of next-generation, low-power local interconnect networking (LIN) systems.

Atmel announces Embedded World lineup



Next week, Atmel will be launching a number of new products to drive smart, connected devices in the era of the Internet of Things (IoT) at Embedded World 2014 in Nuremberg, Germany.

Some of the new products, along with interactive demos, will be showcased at the official Atmel booth located in Hall 4A / #4A-220 and include:

Solutions in Embedded Processing

Solutions in Connectivity



  • World’s first highly integrated, ultra-low power Wi-Fi IoT module powered by Atmel’s Cortex M0+ MCUs.
  • Atmel’s SAMR21, a new family of Cortex M0+ based ultra-low power wireless microcontrollers targeting ZigBee and 6LoWPAN.
  • A new series of automotive LIN (local interconnect networking) SBC (system basis chip) solutions to better connect in-vehicle systems.

Solutions in Software and Tools

Atmel will also be launching the new Studio 6.2 integrated development platform (in beta), which features a new debug probe with advanced debugging to accelerate time-to-market. In addition, Atmel is slated to showcase various demos in the embedded processing, connectivity and software/tools segments, including:

  • Capacitive touch capability with Atmel’s QTouch technologies – Highlights various home appliances to demonstrate conductive immunity and moisture tolerance, along with an Xplained Pro board and capacitive touch extension board.
  • New ARM MCU solutions – A SAM4E data logger with signal processing based on Atmel’s ARM Cortex-M4 MCUs and a SAM D20 global positioning system tracker based on Atmel’s ARM Cortex-M0+ MCUs.
  • SAM A5 MPU applications – A new SAMA5D3 Xplained board, a low-cost ARM Cortex A5 processor kit, a smart thermostat, a home automation and smart fridge demo with a 7” capacitive touch panel.

Other notable demos include Ivee Sleek Wi-Fi, a voice-activated assistance for the home that helps manage and control connected devices without hands; a finger print, voice-search, secure Bluetooth / USB drive that displays passwords; a tiny automatic camera and app that boasts a searchable and shareable photographic memory and a 5mm x 5mm Cortex-A5 System on Module card. 

A polyphase smart e-metering board based on a dual ARM Cortex-M4 core system-on-chip with an integrated metrology AFE will also be on display in the booth.

For Connectivity

  • 

Atmel’s Wi-Fi connectivity solutions – A Turtle Beach i60 headset and Roku 3 box used on a Vizio M-Series flat panel on display.
  • Upcoming ultra-low power IoT module – Integrates the company’s Wi-Fi technology with a Cortex M0+ core. We will be showcasing the latest Xplained PRO Starter demo kit using this soon-to-be-announced Wi-Fi IoT module.
  • 

The new SAMR21 family of wireless MCUs (supported by the new SAMR21 Xplained PRO evaluation kits) – Ideal as a platform for evaluating and developing the SAMR21 wireless MCUs.
  • ZigBee and open-source 6LoWPAN solutions with cloud services.


For Software and Tools



Along with the new Atmel Studio 6.2 and Atmel-ICE, we will be demoing our latest integrated development platform and advanced debug probe. We will also be highlighting a new SAMA5D3 Xplained cost-effective kit based on the ARM Cortex-A5 processor MPU, as well as the new Xplained Mini ultra-low cost evaluation kit with an Atmel 8-bit AVR, low pin-count MCU for less than USD $10. 

In addition, we plan on hosting several Arduino board demonstrations based on Atmel MCUs for our Maker community. And, by popular demand, Atmel will also be showcasing its advanced AvantCar demo, a next-generation automotive center console concept with curved touchscreens that illustrates the combined use of Atmel’s XSense, maXTouch, QTouch, and 8-bit AVR MCU technologies.

Meanwhile, Atmel’s low-power MCU Expert Bob Martin is scheduled to present “Differentiating and Optimizing for Static and Active Microcontroller Modes” during the hands-on workshop: “Applying Optimizing Techniques for Ultra-low Power Microcontrollers” (Class 07) on Wednesday, February 26. In this 9:00 am – 5:00 pm CET day-long session, Martin will be presenting at 9:15 am CET. Last, but certainly not least, Atmel will be announcing winners from its AVR Hero Design contest at the show.

Atmel launches new low-power LIN System Basis Chip (SBC)

Atmel has rolled out the ATA663254, a new flagship LIN system basis chip (SBC) for low-power, local interconnect networking systems used for automotive comfort, power-train, sensor and actuator applications. 
It should be noted that Atmel’s ATA663254 is the first available product in this series of new LIN devices.

Atmel’s new generation of LIN SBC devices deliver significantly lower current consumption in various modes of operation. Meanwhile, the integrated low dropout voltage regulator (LDO) can be used in combination with low-cost  MLC (multi-layer ceramic) blocking capacitors – providing significant cost savings compared to solutions leveraging tantalum capacitors.

According to Rob Valiton, Senior Vice President and General Manager, Automotive, Aerospace and Memory Business Units, the improved voltage regulator works down to 2.3V supply voltage with best-in-class current consumption.

“This enables storing data within the MCU during system shutdown in case of unintended power supply interruption. The advanced features of the ATA663254 enable system designers to design best-in-class in-vehicle network applications in the latest automobiles. The devices are LIN specification 2.0, 2.1, 2.2, 2.2A and SAE J2602-2 certified,” he said.

“[In addition, our] new cost-optimized and performance enhanced LIN SBC is developed on a proprietary BCD-on-SOI (Bipolar CMOS and DMOS-on-Silicon on Insulator) process technology that combines high-voltage capability with rugged silicon on insulator technology. This combination allows for high-temperature operation, excellent EMC performance and very low leakage currents.”

Valiton also noted that the new LIN SBC device addresses the latest requirements for in-vehicle networking systems such as lower power consumption, more compact PCB board designs and enabling an overall lower system cost.

“As the automotive design cycle continues to shorten, Atmel is committed to delivering the most innovative automotive products that enable customers to bring their unique, next-generation designs quickly to market,” he added.

Key ATA663254 features include:

  • LIN Trx + 5V LDO
  • LIN physical layer according to LIN 2.0, 2.1, 2.2, 2.2A and SAEJ2602-2
  • LDO: 5V/85mA±2%
  • MLC blocking capacitors instead of tantalum 
improve overall system cost
  • Works down to 2.3V supply voltage
  • Supply current
  • Sleep mode current <15µA
  • Normal mode current <290µA
  • Low Linear mode current (2V<VS<5.5V) <170µA 
enables data-storage during unintended power supply interruption
  • Compact DFN8 package
  • Heat slug
  • Wettable flanks for automatic optical inspection
  • Pinout according to the new OEM hardware recommendations

To accelerate the design cycle, Atmel is currently offering the ATAB663254A-V1.2 development kit for engineers. Key specs are as follows:

  • Provides all components necessary to drive the ATA663254
  • Choice of master or slave operation
  • All pins easily accessible
  • Switching into normal, silent or sleep mode
  • LEDs for operation indication
  • Ground coulter clip for easy probe connection while measuring with oscilloscope

Interested in learning more about Atmel’s comprehensive LIN portfolio? You can check out our LIN product breakdown here.

Video: Atmel’s AvantCar demo

Earlier this month, Atmel debuted its AvantCar concept at CES 2014 in Las Vegas. The fully functional console features two large curved touchscreen displays – without mechanical buttons. 

Instead, the touchscreens integrate capacitive touch buttons and sliders, allowing users to navigate general applications typically found within an automotive center console.

This includes global navigation system (GPS), car thermostat, audio controls for a radio or media player, seat controls and more. AvantCar also allows drivers to personalize their in-vehicle environment using advanced touch capabilities and LIN connectivity system to control ambient lighting.

According to Atmel Marketing Director Stephan Thaler, AvantCar successfully demonstrates the future of human machine interface (HMI) in upcoming vehicles. Indeed, next-generation automotive designs will be influenced by a wide range of trends in the consumer market such as slick and curved centerstack designs, as well as customization by appearance, color, navigation and interaction with a smartphone or tablet.

Atmel offers a number of comprehensive platforms and solutions to address the current and future requirements of a modern in-vehicle human-machine interface (HMI). However, the AvantCar Centerstack demo is the company’s first fully functional concept showcasing groundbreaking solutions within the automobile.

 To be sure, AvantCar is powered entirely by Atmel technology, including maXTouch (two touchscreens), XSense (curved panel design), QTouch (touch buttons and sliders), dedicated algorithms running on Atmel touch chips and microcontrollers (proximity detection), as well as LIN-based ambient lighting control.

Interested in learning more about Atmel’s AvantCar demo? You can check out our in-depth article on the subject here.

A closer look at Atmel’s AvantCar concept



Earlier this month, Atmel debuted its AvantCar concept at CES 2014 in Las Vegas. The fully functional console features two large curved touchscreen displays – without mechanical buttons. 

Instead, the touchscreens integrate capacitive touch buttons and sliders, allowing users to navigate general applications typically found within an automotive center console.

This includes global navigation system (GPS), car thermostat, audio controls for a radio or media player, seat controls and more. AvantCar also allows drivers to personalize their in-vehicle environment using advanced touch capabilities and LIN connectivity system to control ambient lighting.

According to Atmel Marketing Director Stephan Thaler, AvantCar successfully demonstrates the future of human machine interface (HMI) in upcoming vehicles. Indeed, next-generation automotive designs will be influenced by a wide range of trends in the consumer market such as slick and curved centerstack designs, as well as customization by appearance, color, navigation and interaction with a smartphone or tablet.

Atmel offers a number of comprehensive platforms and solutions to address the current and future requirements of a modern in-vehicle human-machine interface (HMI). However, the AvantCar Centerstack demo is the company’s first fully functional concept showcasing groundbreaking solutions within the automobile.

To be sure, AvantCar is powered entirely by Atmel technology, including maXTouch (two touchscreens), XSense (curved panel design), QTouch (touch buttons and sliders), dedicated algorithms running on Atmel touch chips and microcontrollers (proximity detection), as well as LIN-based ambient lighting control.

Let’s take a closer look at the above-mentioned technology behind the concept.

maXTouch

Atmel’s maXTouch lineup is qualified for various automotive applications, including in-vehicle touchscreens and touchpads.

maXTouch supports screens and pads from 2 inches up to 12 inches in size and is ideally suited for center stack displays as well as navigation systems, radio human-machine interfaces (HMIs) and rear seat entertainment systems. In addition, maXTouch devices provide unlimited touch identification, fast response time, precise operation and low power consumption for touch-based designs.

XSense



Atmel’s XSense touch sensors open a new world of possibilities for touch-based products. A highly flexible film, XSense sensors can be used on curved surfaces and edges, facilitating the design of futuristic in-vehicle touchscreens and surfaces. XSense also enables the replacement of mechanical switches or rotary knobs on a curved centerstack surface with more reliable, moisture-resistant, touch-based buttons.

QTouch


Atmel’s QTouch library makes it easy for developers to embed capacitive-touch button, slider, wheel and proximity functionality in microcontroller applications.

The library facilitates the design of touch panels in the centerstack, as well as overhead or door panels. Plus, the royalty-free QTouch Library offers several files for each device, while supporting a number of touch channels – enabling both flexibility and efficiency in touch applications. In addition, Atmel provides a number of fixed-function products from 1 to 48 channels, with some of them qualified for the automotive market.

Automotive-qualified mcirocontrollers



New automotive functions require local intelligence and control, which can be optimized by the use of small, powerful microcontrollers.

In conjunction with a corresponding touch library, Atmel’s automotive-qualified MCUs are ideal for driving new and futuristic capacitive-based control panels in current and future cars.

LIN-based ambient lighting control



We offer LIN-related products at all integration levels – from simple transceiver ICs to complex system basis chips (SBC), along with system-in-package solutions such as the Atmel AVR ATA664251 for ambient lighting control.

Interested in learning more? You can check out Atmel’s extensive automotive portfolio here.

Atmel showcases AvantCar concept at CES 2014



Atmel is showcasing its AvantCar curved touch screen console concept at CES 2014 in Las Vegas. According to Atmel Marketing Director Stephan Thaler, the exhibit demonstrates the future of human machine interface (HMI) in upcoming vehicles.

atmelavantcar

“Today’s drivers are demanding richer user experiences in the automobile, similar to smart devices in the consumer market,” Thaler explained. 

“This includes capactive touchscreens, curved form factors, personalized color schemes and navigation menus via touch buttons and sliders. AvantCar addresses all these requirements with an advanced user interface in the center console to include [the latest] technologies.”

As Thaler notes, Atmel’s AvantCar concept demonstrates a fully functional center console highlighting two large curved touchscreen displays with no mechanical buttons. Instead, the touchscreens integrate capacitive touch buttons and sliders – allowing the user to navigate general applications typically found within an automotive center console including global navigation system (GPS), car thermostat, audio controls for a radio or media player, seat controls and more. 

AvantCar also allows drivers to personalize their vehicle environment via advanced touch capabilities and the automotive local interconnect network (LIN) connectivity system, enabling individuals to simply push a single button to alter the car’s ambient lighting.

The entire AvantCar center console is powered by Atmel technology, including the XSense touch sensor, maXTouch controller and QTouch, as well as automotive-qualified MCUs and LIN drivers for the ambient lighting control in the demonstrator.

Additional technical details are listed below:

  • Curved touchscreen display – XSense, Atmel’s highly flexible touch sensor, employing metal mesh technology, can be used on curved surfaces and edges, giving the console a sleeker, more elegant design. XSense also facilitates the replacement of mechanical switches or rotary knobs on the curved center console with moisture resistance and glove support for drivers in cold climates.
  • Large capacitive touch screens – AvantCar offers optimized touch performance using Atmel’s automotive-qualified maXTouch controllers that support touchscreens and touchpads up to 12 inches. maXTouch controllers provide faster response times, more accurate touches and lower power consumption than other solutions on the market today.
  • Proximity sensing and capacitive touch buttons and sliders – Atmel’s QTouch technology provides a more intuitive user interface, effectively replacing mechanical buttons or rotary knobs while adding capacitive proximity detection, all embedded in a single controller. Proximity sensing will detect the approaching hand and then control, for example, lights to turn on/off and the touchscreen backlight accordingly. This feature is also ideal for night time driving especially for GPS, radio control and thermostat checks.
  • Ambient lighting controls – Atmel’s LIN solutions, based on the company’s RF and automotive-qualified AVR MCUs, offer an ambient lighting control option for each driver to personalize car lighting.

“Atmel’s AvantCar is designed to show an avant-garde concept of what future car center consoles are likely to look like and how responsive they will be to a driver’s touch using advanced HMI interfaces,” added Thaler. “We are pioneering new ground with our technologies for the automotive segment and are thrilled to add more focus in this area for the upcoming years.”

The demo – designed in in conjunction with Germaneers GmbH – can be seen at Atmel’s Meeting Room #MP25958 located in the Lower Level of the South Hall at the Las Vegas Convention Center. Please contact pr@atmel.com to schedule an appointment.

Automotive circuit design headaches

I wrote an article for Electronic Design magazine about Bob Pease and his solenoid driver circuit. Former National Semiconductor employee Myles H. Kitchen was nice enough to drop me an encouraging note.

“Thanks for your great article on Bob Pease and the solenoid drivers. Having worked with Bob in the late 1970s and early 1980s at National Semiconductor, I came to appreciate his wisdom and simplicity for addressing issues that seemed simple, but were really quite involved. As someone who’s worked on automotive electronics my entire career, an issue such as a solenoid driver is critical. I recall when testing early automotive product designs at one company, we would put the module under test in a car, and then turn on the 4-way flashers to see if operation was affected, or if it stopped working completely. The combination of multiple inductive and high-current resistive loads operating on and off at several hertz would play havoc with the power supply, and immediately point out design deficiencies in module power supplies, regulation, protection, and noise immunity…. some of which could be traced to poor relay or solenoid driver circuits.  Surviving the 4-way flasher test was only a quick way to see how robust the new design might be, but it was a quick indicator if we had things right up to that point. I miss Bob and his ramblings in ED, but hope to see more of your work in the future.  Loved it.”

Well, having been an automotive engineer at both GM and Ford before moving out to Silicon Valley, Myles’s note sparked a flood of memories. His four-way flasher story was prophetic. When I was in college at GMI (General Motors Institute) one of my pals worked at Delco. They were just coming out with the integrated electronic voltage regulator in the back of the alternator, circa 1973. So all the executives were standing around at a demo and after they ohhhh and ahhhh, and congratulate themselves, my buddy gets in the car, and knowing what Myles knows, he cycles the air conditioning switch a few times. The “Charge” light promptly came on.

Auto-warning-lights

I asked my fellow student if he was in trouble or if they hated him for causing the failure, and to GM’s credit, he told me “No, they were actually glad I found it before it went into production.” It must have been some serious egg on some faces, though. After that, survival after repeated AC clutch cycling became part of the spec for the voltage regulator. I bet four-way flashers are included as well.

I later worked on anti-lock brakes for GMC heavy duty trucks. This was way before anti-lock brakes on cars, about 1975. We dutifully shielded all the wires to the sensors with expensive braided cable. When we pulled the truck out on the road, the brakes started modulating, with the truck just sitting there. We realized that the entire 24V power system was a pretty nice antenna and that noise can get into a module from the power side as easy as from the sensors. We begged the government to give us more time, and they did. Indeed, I don’t know if they ever put in antilock brakes on heavy trucks. Let me check, yeah, wow, it’s still called MVSS 121 (motor vehicle safely standard) and it finally went into effect in 1997. That was at least a 20-year delay in getting it working.

I told Bob Reay over at Linear Tech that automotive design was the toughest, because you had a military temperature and vibration, but consumer cost. He added another factor, the chips for automotive have to yield well, since you need to ship millions. What a crazy challenge.

When I thanked Myles Kitchen for his kind words and told him the above stories, he responded with a great story about load dump. The phenomena called load dump is usually caused by a mechanic who is troubleshooting the battery and charging system of a car. You get the car running, rev it up a bit, and yank off the battery cable. If the car keeps running, that means the alternator and regulator are OK, it is just a bad battery. Thing is, the alternator is often putting full output into this bad battery. And when you yank the cable off the battery, the voltage regulator controlling the alternator cannot react instantly. So there is this huge overvoltage spike as all the stored energy in the alternators magnetic field has to dissipate into whatever loads are still connected, like your radio. A load dump can put over 100 volts on electrical system. And it is not a fast spike; it can last for hundreds of milliseconds. Smart mechanics just leave the battery cable on and hook up a voltmeter to see if the alternator is putting 13.75 to 14.2 volts on the battery. So Myles recounts:

“Thanks for your email.  Yes, sounds like we’ve run up against many of the common automotive issues in our time.  I’ll add one brief anecdote here.  When I worked at Motorola’s automotive division, I certainly learned all about what a load dump is, but I’d never really heard of anyone experiencing one first-hand and what it could do.  One day, our admin complained that her 70’s vintage Plymouth Duster wasn’t running right, and that her headlamps and radio quit working.  She had been driving it the night before when something went wrong.  We brought it into the garage at Motorola, and found that she had a very discharged battery with very loose battery connections. You could just lift them off with your hand.  As a result, her battery was discharged, and when she hit a Chicago pothole it all went bad.  The resulting load dump had blown out every light bulb filament in the car, along with the radio.  Only the alternator/regulator had survived.  The ignition was still a points and condenser system, or that would have probably died as well.  A new battery, tight connections, and a bunch of replacement bulbs got her back on the road again.  And, I’ve never doubted the need for a load-dump-tolerant design since!”

Those are wise words from someone who has been there and seen it first-hand. And I wonder if the voltage regular in that old Duster was a mechanical points type. In the early days we automotive engineers would try to protect each individual component for load dump. The radio would have a Zener diode clamp, so would the cruise control module. Then manufactures put a big Zener clamp right in the voltage regulator that clamps the voltage on the whole car. Maybe that was too low an impedance to clamp, because now I see there are a lot of smaller distributed TVS (transient voltage suppressor) clamps that you use to protect the circuitry of your module.

There are two other approaches. One, you can just disconnect your circuit with a high-voltage FET when the load dump happens:

Overvoltage-cut-out-circuit

I used this circuit to keep automotive overvoltage from destroying an LT1513 chip I used as a battery charger. When the DC Bus voltage exceeds the 24V Zener plus the base-emitter drop of Q10, it turns Q10 on and that turns Q12 off and protects downstream circuitry from overvoltage.

Alternative two, you can put a high-voltage regulator in front of your circuit that will maintain power to your circuit through the load dump, at the risk that the pass transistor will overheat since it is dropping a lot of voltage while passing current during the load dump. Linear Tech makes such a part.

There is one more tip for every engineer regarding automotive electronics. Remember that there are laws that make auto manufacturers offer service parts for 10 or 15 years. So no matter what your application, you might consider using an automotive part like Atmel’s line of MCUs, memory, CAN/LIN bus, and RF remote controls. We state that we will be making many of these parts for over a decade. If you design them into your industrial, medical or scientific application (ISM) you can have some assurance you can still get the part for years, or at least a pin-for-pin compatible part. That means no board spins. On top of that assurance, most of the parts have extended temperature range, which might help in your application as well. Since we make the parts for high-volume automotive customers, they are usually priced very reasonably.