Tag Archives: Lilypad

These Arduino-based outfits flash to the beat of music


Created by a team of Cornell students, these smart garments have the front page of Adafruit written all over them.


Smart garments are one of the wearables that Gartner has billed as having the greatest potential for growth. A testament to the limitless possibilities of that space is a recent project by a group of undergrads from Cornell University. The students have created a set of embedded outfits with vivid, luminescent panels that can pulse to the beat of music.

(Source: Cornell Chronicle)

(Source: Cornell Chronicle)

“This collection is inspired by the future – and present – of wearable technology being more and more integrated into fashion and daily life,” explains co-creator Eric Beaudette. “These garments depict our vision of fashion of the future, having increased function and compatibility with devices, such as smartphones.”

Surely, anyone wearing these fabricated pieces would turn some heads with its optical fiber cloth illuminated by controllable RGB LEDs and strips of electroluminescent tape. An Arduino (which we assume would be an ATmega32U4 based LilyPad) sewn into each garment enables the lights to accurately brighten to the tunes.

(Source: Cornell Chronicle)

(Source: Cornell Chronicle)

The team noted that maintaining harmony between the materials, technologies and construction can be difficult task. “Garments with circuitry and other technologies add layers of complexity, especially since these technologies were not originally designed for use with clothing.”

Which Arduino board is right for you?


Picking an Arduino is as easy as Uno, Due, Tre! 


Thinking about starting a project? See which Arduino board is right for the job.

Arduino Uno

This popular board — based on the ATmega328 MCU — features 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator, USB connection, power jack, an ICSP header and a reset button.

ArduinoUno_r2_front450px

The Uno does not use the FTDI USB-to-serial driver chip. Instead, it features the ATmega16U2 (ATmega8U2 up to version R2) programmed as a USB-to-serial converter.

In addition, Revision 3 of the Uno offers the following new features:

  • 
1.0 pinout: added SDA and SCL pins that are near to the AREF pin and two other new pins placed near to the RESET pin, the IOREF that allow the shields to adapt to the voltage provided from the board. Note: The second is not a connected pin.
  • 
Stronger RESET circuit.
  • ATmega16U2 replace the 8U2.

Arduino Leonardo

The Arduino Leonardo is built around the versatile ATmega32U4. This board offers 20 digital input/output pins (of which 7 can be used as PWM outputs and 12 as analog inputs), a 16 MHz crystal oscillator, microUSB connection, power jack, an ICSP header and a reset button.

300-xl

The Leonardo contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. Plus, the ATmega32U4 offers built-in USB communication, eliminating the need for a secondary processor. This allows it to appear as a mouse and keyboard, in addition to being recognized as a virtual (CDC) serial / COM port.

Arduino Due

The Arduino Due is an MCU board based on the Atmel | SMART SAM3X8E ARM Cortex-M3 CPU.

ArduinoDue_Front

As the first Arduino built on a 32-bit ARM core microcontroller, Due boasts 54 digital input/output pins (of which 12 can be used as PWM outputs), 12 analog inputs, 4 UARTs (hardware serial ports), an 84 MHz clock, USB OTG capable connection, 2 DAC (digital to analog), 2 TWI, a power jack, an SPI header, a JTAG header, a reset button and an erase button.

Unlike other Arduino boards, the Due runs at 3.3V. The maximum voltage that the I/O pins can tolerate is 3.3V. Providing higher voltages, like 5V to an I/O pin, could damage the board.

Arduino Yún

The Arduino Yún features an ATmega32U4, along with an Atheros AR9331 that supports a Linux distribution based on OpenWRT known as Linino.

ArduinoYunFront_2

The Yún has built-in Ethernet and Wi-Fi support, a USB-A port, a microSD card slot, 20 digital input/output pins (of which 7 can be used as PWM outputs and 12 as analog inputs), a 16 MHz crystal oscillator, microUSB connection, an ICSP header and 3 reset buttons. The Yún is also capable of communicating with the Linux distribution onboard, offering a powerful networked computer with the ease of Arduino.

In addition to Linux commands like cURL, Makers and engineers can write their own shell and python scripts for robust interactions. The Yún is similar to the Leonardo in that the ATmega32U4 offers USB communication, eliminating the need for a secondary processor. This enables the Yún to appear as a mouse and keyboard, in addition to being recognized as a virtual (CDC) serial?COM port.

Arduino Micro

Developed in conjunction with Adafruit, the Arduino Micro is powered by ATmega32U4.

The board is equipped 20 digital input/output pins (of which 7 can be used as PWM outputs and 12 as analog inputs), a 16 MHz crystal oscillator, microUSB connection, a ICSP header and a reset button. The Micro includes everything needed to support the microcontroller; simply connect it to a computer with a microUSB cable to get started. The Micro even has a form factor that lets the device be easily placed on a breadboard.

Arduino Robot

The Arduino Robot is the very first official Arduino on wheels. The robot is equipped with two processors — one for each of its two boards.

Robot_Top

The motor board drives the motors, while the control board is tasked with reading sensors and determining how to operate. Each of the ATmega32u4 based units are fully-programmable using the Arduino IDE. More specifically, configuring the robot is similar to the process with the Arduino Leonardo, as both MCUs offer built-in USB communication, effectively eliminating the need for a secondary processor. This enables the Robot to appear to a connected computer as a virtual (CDC) serial?COM port.

Arduino Esplora

The Arduino Esplora is an ATmega32u4 powered microcontroller board derived from the Arduino Leonardo. It’s designed for Makers and DIY hobbyists who want to get up and running with Arduino without having to learn about the electronics first.

The Esplora features onboard sound and light outputs, along with several input sensors, including a joystick, slider, temperature sensor, accelerometer, microphone and a light sensor. It also has the potential to expand its capabilities with two Tinkerkit input and output connectors, along with a socket for a color TFT LCD screen.

Arduino Mega (2560)

The Arduino Mega features an ATmega2560 at its heart.

It is packed with 54 digital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, USB connection, a power jack, an ICSP header and a reset button. Simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with most shields designed for the Arduino Duemilanove or Diecimila.

Arduino Mini

Originally based on the ATmega168, and now equipped with the ATmega328, the Arduino Mini is intended for use on breadboards and projects where space is at a premium.

Mini05_front

The board is loaded with 14 digital input/output pins (of which 6 can be used as PWM outputs), 8 analog inputs and a 16 MHz crystal oscillator. It can be programmed with the USB Serial adapter, the other USB, or the RS232 to TTL serial adapter.

Arduino LilyPad

The LilyPad Arduino is designed specifically for wearables and e-textiles. It can be sewn to fabric and similarly mounted power supplies, sensors and actuators with conductive thread.

The board is based on the ATmega168V (the low-power version of the ATmega168) or the ATmega328V. The LilyPad Arduino was designed and developed by Leah Buechley and SparkFun Electronics. Readers may also want to check out the LilyPad Simple, LilyPad USB and the LilyPad SimpleSnap.

Arduino Nano

The Arduino Nano is a tiny, complete and breadboard-friendly board based on the ATmega328 (Arduino Nano 3.x) or ATmega168 (Arduino Nano 2.x).

The Nano has more or less the same functionality of the Arduino Duemilanove, but in a different package. It lacks only a DC power jack and works with a Mini-B USB cable instead of a standard one. The board is designed and produced by Gravitech.

Arduino Pro Mini

Powered by an ATmega328, the Arduino Pro Mini is equipped with 14 digital input/output pins (of which 6 can be used as PWM outputs), 8 analog inputs, an on-board resonator, a reset button and some holes for mounting pin headers.

50720-11114-02

A 6-pin header can be connected to an FTDI cable or Sparkfun breakout board to provide USB power and communication to the board. Note: See also Arduino Pro.

Arduino Fio

The Arduino Fio (V3) is a microcontroller board based on Atmel’s ATmega32U4. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 8 analog inputs, an on-board resonator, a reset button and holes for mounting pin headers. It also offers connections for a lithium polymer battery and includes a charge circuit over USB. An XBee socket is available on the bottom of the board.

The Arduino Fio is intended for wireless applications. The user can upload sketches with an a FTDI cable or Sparkfun breakout board. Additionally, by using a modified USB-to-XBee adaptor such as XBee Explorer USB, the user can upload sketches wirelessly. The board comes without pre-mounted headers, facilitating the use of various types of connectors or direct soldering of wires. The Arduino Fio was designed by Shigeru Kobayashi and SparkFun Electronics.

Arduino Zero

Last year, the tandem of Atmel and Arduino debuted the Zero development board – a simple, elegant and powerful 32-bit extension of the platform. The Arduino Zero board packs an Atmel | SMART SAM D21 MCU, which features an ARM Cortex M0+ core. Additional key hardware specs include 256KB of Flash, 32KB SRAM in a TQFP package and compatibility with 3.3V shields that conform to the Arduino R3 layout.

Zero-Blog-1

The Arduino Zero boasts flexible peripherals along with Atmel’s Embedded Debugger (EDBG) – facilitating a full debug interface on the SAMD21 without the need for supplemental hardware. Beyond that, EDBG supports a virtual COM port that can be used for device programming and traditional Arduino bootloader functionality. This highly-anticipated board will be available for purchase from the Arduino Store in the U.S. on Monday June 15th.

Arduino AtHeart

The Arduino AtHeart program was specifically launched for Makers and companies with products based on the open-source board that would like to be clearly identified as supporters of the versatile platform. The program is available for any device that includes a processor that is currently supported by the Arduino IDE, including the following Atmel MCUs:

Participants in the program include startups like:

EarthMake – ArLCD

The touchscreen ArLCD combines the ezLCD SmartLCD GPU with the Arduino Uno.

ee9bedf0de7441839ba219cb9df9f51a.image.446x354

Bare Conductive Touch Board

The ATmega32U4 based Touch Board can turn nearly any material or surface into a sensor by connecting it to one of its 12 electrodes, using conductive paint or anything conductive.

0f334dab601135bf329b68c8aee984f3.image.538x354

Blend Micro

The RedBearLab integrated dev platform “blends” the powers of Arduino with Bluetooth 4.0 Low Energy into a single board. It is targeted for Makers looking to develop low-power IoT projects in a quick, easy and efficient manner. The MCU is driven by an ATmega32U4 and a Nordic nRF8001 BLE chip.

14627c6f2dffee59911a21ede7a71a9a.image.447x354

littleBits Arduino Module

The fan-favorite Arduino module, which happens to also be based on an ATmega32U4, lets users easily write programs in the Arduino IDE to read sensors and control lights and motors within the littleBits system.

arduino_withlogo

Smart Citizen Kit

An Arduino-compatible motherboard with sensors that measure air composition (CO and NO2), temperature, light intensity, sound levels, and humidity. Once configured, the Smart Citizen Kit is capable of streaming data collected by the sensors over Wi-Fi.

8913f25184f084d52da77d70f5261203_large

A look at some of today’s wearable microcontrollers


This list is sew awesome!


Created by Leah Buechley of MIT, and introduced commercially with SparkFun back in 2007, the LilyPad was the first board to feature sew-through contacts for stitching soft circuits. Since then, a number of “ready-to-wear” electronics platforms have emerged, each of which have helped usher in a new generation of textiles that look to redefine wearable technology. In fact, a recent Gartner report revealed that the emergence smart garments will potentially disrupt the market. So much so that embedded clothing shipments are projected to rise from a mere 0.1 million units in 2014 to 26 million units in 2016.

As first noted by MAKE: Magazine’s Boris Kourtoukov, “there’s a plethora of options” when it comes to these microcontrollers. What’s more, they all possess one common trait: they’re powered by Atmel. These so-called body boards are now giving Makers the ability to easily (and affordably) produce their own projects in ways that otherwise would have been unimaginable.

So, without further ado, here’s a look at some of today’s most prominent boards ready for adornment.

The Favorites

LilyPad Arduino

09266-04

LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively brought to life with SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. LilyPad can sense information about the environment using inputs like light and temperature sensors and can act on the environment with outputs like LED lights, vibrator motors, and speakers. And yes, they’re even washable.

MCUATmega328

FLORA

Mega

FLORA is Adafruit’s fully-featured wearable electronics platform. The round, sewable microcontroller weighs in at 4.4 grams and measures only 1.75 inches in diameter. 100% Arduino-compatible, the platform is one of the most beginner-friendly ways to create some amazing wearables. The FLORA family includes an assortment of sensors and RGB LEDs that let you add lighting to your projects, not to mention also boasts built-in USB support, eliminating the need for pesky special cables and extra parts.

MCUATmega32U4

GEMMA

100212_1024x1024

Those who are seeking the awesomeness of FLORA but in a tinier package are sure to love another one Adafruit’s wearable platforms: the GEMMA. The board, which packs all of its features in a 1″ diameter package, is programmable with an Arduino IDE over USB. An upcoming Arduino IDE-supported version will feature an on/off switch and microUSB connector.

MCUATtiny85

TinyLily Mini

2

A brainchild of TinyCircuits, the TinyLily Mini is an Arduino-compatible module in an ultra-compact package. Geared towards Makers looking to devise e-textile and wearable applications, the board is very similar to the Arduino LilyPad, with the same processing power and software compatibility – but at 1/12th of the size. The TinyLily Mini also is equipped with sew tabs for eight I/O (four digital, four analog/digital) and four power sew tabs (two for power, two for ground).

MCUATmega328

SquareWear

Sqw

SquareWear is an open-source, wearable board. The Arduino-compatible MCU measures 1.7″x1.7″ in size, and is equipped with a built-in rechargeable Lithium coin battery. It is designed to be sewable, which allows Makers to stich conductive threads through its large pin pads, solder a wire directly onto the pads, or solder snaps onto the pads for quick attachment or detachment from textiles and fabrics. Additionally, the MCU packs an on-board miniUSB port that can be used for programming, charging batteries and serial communication, as well as a color LED, a pushbutton, a buzzer, a light and temperature sensor, and three MOSFETs to drive the high-current load. See, it’s hip to be square!

MCUATmega328

Xadow

Xadow_MainBoard

Seeed Studio’s Xadow is a high-performance, low-power board that is perfectly suited for wearable projects. The microcontroller can be powered either via USB or a Lithium battery. Also, there is charge circuit on this module that you can charge for the Lithium battery through the USB port. Xadow has a diverse selection of compatible modules, including a barometer, UV sensor, LED, OLED and even a full GPS antenna.

MCU: ATmega32U4

Trinket

adafruit-trinket-5v

Trinket goes to show that big things really can come in small packages. In fact, the tiny MCU is one of the lowest-cost Arduino IDE programmable boards on the market today. Adafruit designed a USB bootloader so Makers could easily plug it into any computer and reprogram it over a USB port just like an Arduino. It comes in two different versions: 3V and 5V. Both work the same, but have different operating logic voltages.

MCU: ATtiny85

Pro Trinket

MFG_2000

A bigger sibling of the aforementioned board, this 5V unit combines everything you love about Trinket along with the familiarity of the common core found in Arduinos. It’s like an Arduino Pro Mini with more pins along with built-in USB. The Pro Trinket, which still only measures 1.5″ x 0.7″ x 0.2” in size, features 18 GPIO, two extra analog inputs, 28K of flash, as well as 2K of RAM. Like its older brother, the MCU has onboard USB bootloading support and Optiboot support, so Makers can either program their Pro Trinket over USB or with a FTDI cable just like the Pro Mini. (Recently, paying homage to our friends at Hackaday, the Adafruit crew even unveiled a Hackaday.io branded board — black solder mask, Jolly Wrencher and all. And, it’s stunning.)

Atmel MCU: ATmega328

Ones to Watch

BITalino

Bit

BITalino is a low-cost, easy-to-use toolkit designed for anyone looking to build self-tracking applications based on information from their body. The platform enables Makers to quickly bring projects entailing body signals and quantified self wearable devices to life, as well as learn how to create actual medical devices — which otherwise can cost upwards of $10,000. BITalino is described by its creators as an out-of-the-box solution that offers an array of Arduino-compatible software and hardware blocks equipped with sensors for electrocardiography (ECG), electromyography (EMG), electrodermal Activity (EDA), accelerometry (ACC), and ambient light (LUX).

MCUATmega328

Printoo

Printoo

Launched by Ynvisible, Printoo is a printed electronics prototyping platform that is capable of bringing everyday objects to life. Comprised of various hardware modules that can all be connected to each other, it is currently the only platform that appears to have a robust flexible form-factor. This enables Makers to quickly and seamlessly create first product concepts for smart wearable devices. Moreover, the board is fully-compatible and programmable with the Arduino IDE.

MCUATmega328

SuperDuino

SuperDuino

Introduced by Maker Mohsin Farooq, SuperDuino is a coin cell operated, Arduino-compatible board with a built-in 1.7-inch color display and a three-axis accelerometer. As you can imagine, this makes the MCU a suitable match for a wide-range of DIY games, gadgets and most of all, wearable devices.

MCU: ATmega328

Building a Star Wars Chewbacca coat with Arduino Lilypad


Pop it like it’s Hoth! 


If you haven’t noticed by now, we Makers love Star Wars. And, just when we thought we’ve seen it all — from hacking 3D printers to play the Imperial March theme to Jedi-like drones racing through the forest to DIY cross guard lightsabers — another project has emerged from a galaxy far, far away.

PopIt

A Maker by the name of “Malarky” recently developed a Chewbacca coat that emits the infamous Star Wars theme when its collar is flipped up and turns off when put back down. The wearable piece is based on an Arduino Lilypad (ATmega328) along with a light sensor, a small LiPo battery, a few feet of conductive thread and a LilyPad buzzer that serves as its speaker.

“As you can see, the circuit is pretty simple, just find where you will place the components on your sweater. Make sure the light sensor will be completely covered when the collar is flipped down, and sufficiently exposed when flipped up,” Malarky advises. “This is what triggers the music.”

FEGNTNRI45HJFEZ.MEDIUM

How it works is super simple: If the light sensed is bright enough, the music plays. When the collar is flipped down and covers the light sensor, the tune stops. The buzzer can be embedded anywhere, however Malarky chose to keep it close to the main board so it was easier to sew.

The Maker then went on to code the incredibly popular song and light sensor. “You will need to download both the Arduino sketch and the pitches .h file, and load that pitches file into your sketch so that it can reference the code,” he explains. “Make sure and update all of the pins to use the ones you actually use in your Arduino. You may also need to adjust the light sensor sensitivity increasing or decreasing the “sensorValue” value, increase it to make it less sensitive, or decrease it to make it more sensitive.”

FJ3HWOFI45HJFGA.MEDIUM

Perhaps, you would prefer a Jedi robe, a Stormtrooper suit or a Luke Skywalker tunic. Luckily, the Maker reveals that the platform can be embedded on any garment that features a collar and programmed to play any song using the AVR based board. With May 4th quickly approaching, this could be the perfect outfit to rock throughout the office or classroom. May the Maker force be with you!

Head over the project’s official Instructables page for a step-by-step breakdown of the build.

Video: Atmel & Arduino power this robotic hand

A high school student known as “Gabry25” has designed a wirelessly controlled robotic hand using an Atmel-based Arduino LilyPad and an Atmel-powered Arduino Uno.

As Julian Horsey of Geeky Gadgets reports, the wireless robotic hand faithfully reproduces the movements of an accompanying glove worn on another hand.

Aside from the above-mentioned Arduino boards, key project components include:

  • Shield to connect the Xbee module
  • Robot_Shield
  • 5 Flex sensors
  • 5 resistors: 47 KΩ
  • Battery pack with 3×1.5 V batteries
  • LilyPad FTDI adapter (optional)
  • A steel structure for the palm of the hand and wood for the fingers
  • 5 servomotors
  • Fishing wires
  • 9 V Battery

“To connect the servomotors I used the Robot_Shield from FuturaElettronica, which has also a switching regulator to power the entire circuit, but you can use any shield made for that,” Gabry25 explained in a recent Instructables post.

Interested in learning more? You can check out the project’s official Instructables page here.

Transforming fashion with tech



17-year-old Ella DiGregorio recently introduced a line of “Transforming Beauty” gowns that literally change from long skirts to short with the touch of a button.

As Mari Grigaliunas of MySuburbanLife reports, DiGregorio’s sample dress uses threads that run from the bottom hem to the waist of the garment to shorten the skirt when she pushes the button of an Atmel-based Arduino board hidden in the back of the dress.

Additional designs sketched by the teen arrange the threads in various designs to create completely different looks including a high-low skirt, a layered look and an Angelina Jolie inspired slit that disappears.

“I really like the idea of technology and fashion. There’s so many possibilities.” DiGregorio said.

“I’m kind of use to hiding things in clothing,”

As we’ve previously discussed on Bits & Pieces, quite a lot of wearable activity is currently centered around companies like Arduino and Adafruit. Both offer wearable electronic platforms powered by versatile Atmel microcontrollers (MCUs).

“Building electronics with your hands is certainly a fun brain exercise, but adding crafting into the mix really stretches your creativity,” says Becky Stern, Adafruit’s director of wearable electronics.

“Sewing is fun and relaxing, and adorning a plush toy, prom dress, or hat with a circuit of tiny parts can make you feel like you’re some kind of futuristic fashion designer. Playing with sensors and conductive textiles breaks electronics out of their hard shells and makes them more relatable.”

Just like their IoT DIY Maker counterparts, the soft electronics community has adapted various Atmel-powered platforms specifically for wearables, including the Arduino Lilypad (ATmega328V) (developed by MIT Media Lab professor Leah Buechley) and Adafruit’s very own Flora (ATmega32u4), which can be easily daisy chained with various sensors for GPS, motion and light.

Interested in learning more? You can check out our wearables article archives here.

Arduino LilyPad plays MP3 workout shirt



BBrodsky has created an MP3-equipped workout shirt powered by an Atmel-based (ATmega328P) Arduino LilyPad (MP3).

“[The] workout shirt utilizes the MP3 player and an accelerometer to detect whether or not the wearer is moving. If so, it plays his or her music. The goal of the system is to promote an active lifestyle for wearers,” BBrodsky wrote in a recent Instructables post.

“The price of our system ranges between $60 and $100 based on parts used, the cost of the shirt, etc. It is affordable, easy to understand and create and will help promote healthiness and physical activity in society.”

Aside from the LilyPad MP3 player, key project components include:

  • LilyPad accelerometer
  • RGB rotary encoder
  • 
3.7V Lipo (lithium ion) battery
  • Micro SD card
  • Headphones or speakers
  • 
Conductive thread and a sewing needle
  • Soldering iron
  • Solder coil
  • Alligator clips (for testing the circuitry before sewing)
  • Rainbow LEDs (optional)
  • Vibration board (optional)
  • Button (optional)
  • On/off switch (optional)
  • Extra fabric and card stock (optional)

BBrodsky kicks off his Instructables by providing a brief overview of the MP3-equipped workout shirt.

“[The] system uses the accelerometer to sense motion, communicating the detected motion (or lack thereof) to the MP3 player. The MP3 player then runs the corresponding functions based on the values it receives from the accelerometer. The RGB rotary encoder is used as a visual that displays different colors (blue or green) based on what function is being executed,” he explained.

“Once the system is completed and integrated with the shirt, the device should be ready to use. Keeping the device plugged in using via USB to a laptop is useful, as the serial monitor can be used to visualize the processes that the system is running. The headphone jack can also be used to plug in speakers so that the music can be played out loud.”

Interested in learning more? You can check out the project’s official Instructables page here.

Sketching a LilyPad sensor demo mat

The Atmel-based LilyPad Arduino – designed by Leah Buechley and SparkFun Electronics – is targeted specifically at wearables and e-textiles.

The platform, powered by either the ATmega168V (the low-power version of the ATmega168) or the ATmega328V, can be sewn to fabric and similarly mounted power supplies, sensors and actuators with conductive thread.

Recently, a Maker by the name of Duniken created a sensor demo mat for the LilyPad and posted a detailed description of the build on Instructables.

“I wanted a place where I could experiment with the different sensors, but also something that I could use to show examples of what can be done without constantly uploading code,” he explained.

Key project components?

  • 

1 x ProtoSnap – LilyPad Development Board (kit) which includes the following:
  • 1 x LilyPad Simple Board
  • 1 x LilyPad Button
  • 1 x LilyPad Slide Switch
  • 5 x LilyPad White LED
  • 1 x LilyPad RGB tri-color LED
  • 1 x LilyPad Light Sensor
  • 1 x LilyPad Temp Sensor
  • 1 x LilyPad Buzzer
  • 1 x LilyPad Vibe board
  • 1 x LilyPad FTDI Basic
  • 2 x Conductive Thread Bobbin
  • 1 x Needle Set

Duniken also used:

  • 

7 x sewable snaps
  • 1 x Piece of fabric big enough to hold all of the sensors
  • 1 x Fabric Marking pen

“Although I had the LilyPad Development Board, I decided to use the LilyPad Simple Board so I could use the extra pins as switches,” he clarified.

After drawing up a diagram using LucidChart, Duniken arranged the sensors and switches on the fabric, using the marking pen to indicate where each pin and component would be placed.

“I removed the sensors and used the marking pen to draw the circuit onto the fabric with a ruler to make sure all of my lines were straight. When I had the lines drawn, I again placed the sensors on the mat to make sure that everything lined up the way I wanted it to,” said Duniken.

“I ended up changing the position of the RGB light slightly so the lines were less likely to make contact with the other pins on the LilyPad. I wanted the lines to be part of the final piece so, once I was satisfied with the diagram, I traced the lines with a permanent marker. If I did it over, I would probably color code the lines so that it can be better used to explain how the circuit works.”

Next, Duniken cleaned off the marking pen, stitched on the sensors and other components, sewed the circuits and sketched the code.

“To ensure that the sensors stayed put while I sewed the circuits, I did a quick stitch with plain thread to hold the components in place. Using the conductive thread, I sewed along each of the circuit lines connecting the different components to the LilyPad,” he added.

“Be careful where the Positive lines (red) cross the Ground lines (black). I used a small piece of plastic cut from the LilyPad packaging to make sure that the lines didn’t short. I used hot glue to tack down the plastic so it wouldn’t snag on anything.”

Interested in learning more about designing your own Arduino Lilypad Sensor Demo Mat? You can check out the project’s Instructables page here.

Soothing blankets with an Arduino LilyPad

A weighted blanket is often used to help soothe individuals with sensory integration issues such as autism. Annuska Perkins of Good Labs has been experimenting with Atmel-powered Arduino LilyPads to enhance standard weighted blankets by making them more interactive and soothing, all while heightening their guided play capabilities.

Image credit: ITworld/Phil Johnson

Perkins recently showcased a number of e-textile Good Labs prototypes at the Tech@LEAD conference in Washington, DC.

“Among the LilyPad-powered items Perkins brought was a blanket with a sensor that will trigger a buzzer when covered up by your hand,” Phil Johnson of ITWorld reported. “Then there was the Blinkie Blanket, which uses 5 LED lights, triggered by touch, which can help, for example, to guide the user in relaxation.”

In the future, says Johnson, Perkins hopes to enhance the blanket by providing biofeedback capabilities, allowing it to connect with other devices to promote social interaction.

As previously discussed on Bits & Pieces, the Arduino LilyPad is a microcontroller board designed for wearables and e-textiles. It can be sewn to fabric and similarly mounted power supplies, sensors and actuators with conductive thread. The board is based on Atmel’s ATmega168V or the ATmega328V.

Electronic textiles, often powered by Arduino’s LilyPad, are typically used by artists to integrate sensors and LED lights into clothing, which can then be programmed for informative feedback and artistic purposes.

Atmel-based Arduino boards fuel artistic expression

Although some schools may be cutting back on arts education, young people are continuing to follow their artistic passions outside of traditional programs. This trend is fueled by a wide range of DIY hardware and software, including Atmel-powered Arduino boards.

“Young people are producing this art solely because they want to and are motivated by their own pride in their work and curiosity, not because of what others think or want,” explained Kylie Peppler, an Indiana University assistant professor of learning sciences, and author of New Opportunities for Interest-Driven Arts Learning in a Digital Age, a recent report commissioned by the Wallace Foundation. “These interest-driven arts projects offer valuable insights about what make youth engage and persist in arts activities.”

According to Peppler, new technologies are expanding the possibilities for creative production. For example, Atmel-powered Arduino boards are being used to help artists and designers create their own robotic sculptures or interactive environments.

One specific permutation of Arduino is the e-textiles community built around the versatile LilyPad kit. As previously discussed on Bits & Pieces, electronic textiles enable artists to integrate sensors and LED lights into clothing, which can be programmed for informative feedback and artistic purposes, such as interactive dance costumes capable of controlling electronic music software in real time.

Interested in learning more? The full text of New Opportunities for Interest-Driven Arts Learning in a Digital Age is available here.