Tag Archives: Kevin Ashton

The IoT connects a cast of billions

Based on current estimates, the number of “things” predicted to be connected to the Internet by the end of this decade range from a staggering 30bn to 50bn. However, as Clint Witchalls notes in a recent report sponsored by ARM, having connected “things” is the easy part. More difficult will be getting these things to communicate with each other—where human involvement is still necessary.

iotchart1

“With the traditional Internet it was easy to ‘go it alone.’ Voice over Internet protocol (VoIP) start-ups did not first sit down with telecommunications operators and work out how they would fit together in the ecosystem,” Witchalls explains. “[In] contrast, the IoT tends to follow Metcalfe’s Law, which says that the value of a network is proportional to the square of the number of its users. Thus, a more cooperative approach than that shown in the past by telecoms and Internet companies will be required. Many users are needed to achieve the ‘network effects.'”

Kevin Ashton, who originally coined the term the “Internet of Things” (IoT) in 1999 while working at Proctor & Gamble, draws another clear distinction between the Internet and the IoT. As Ashton points out, the rollout of the traditional Internet happened relatively quickly, with companies granted access to a system that could interoperate before they had invested too heavily in systems that could not.

Since then, companies have built up their own networks, with significant investment. The challenge? To convince corporations to see the benefits in a common network. A simple example of one of these “walled gardens,” says Ashton, is employee office passes or ID badges, many of which are fitted with radio-frequency identification (RFID) tags. While swiping an ID card will get an employee into his or her workplace, the employee still has to fill out a form or wear an identity sticker when visiting a different office building. A common network between landlords could eliminate this inefficiency, while creating a much richer data set on employee whereabouts.

“What we have right now is a lot of IoT-type technology that is heavy on things and light on Internet,” Ashton confirms. “That’s [really] the bit that needs to change.”

Unsurprisingly, much of the collaboration currently under way within industry verticals is around standards, such as information-exchange protocols. According to Elgar Fleisch, the deputy dean of ETH Zürich, there is an extensive standardization effort going on.

“The main impact of standardization is that every computer can talk to every other computer and everything can talk to every other thing,” he says. “That dramatically reduces the cost of making things smart. The IoT will not fly if we don’t have these standards.”

Clearly, the full potential of the IoT will only be unlocked when small networks of connected things, from cars to employee IDs, become one big network of connected things extending across industries and organizations. Since many of the business models to emerge from the IoT will involve the sale of data, an important element of this will be the free flow of information across the network.

Interested in learning more about the rapidly evolving IoT? Part one of this series can be read here, part two here and part four here.

Taking the IoT to the next level

Over three-quarters of companies are now actively exploring or using the Internet of Things (IoT), with the vast majority of business leaders believing it will have a meaningful impact on how their companies conduct business. Clearly, the the IoT is reaching a tipping point.

iotimpact

Although the concept of an Internet of Things has been around for at least a decade, the IoT is beginning to become an important action point for the global business community. As Clint Witchalls notes in a recent report sponsored by ARM, there is no doubt that IoT-related technology is already having a broad impact across the world. Although the precise effect is likely to vary by country and by company, it is hard to imagine any sector will be left untouched by rapidly evolving Internet of Things.

Kevin Ashton who originally coined the term the “Internet of Things” (IoT) in 1999 while working at Proctor & Gamble, points out that the recent “trickle” of IoT product releases is all part of a larger plan to test market appetite.

“We are trying to understand before we get in too deep, because once you are financially invested and committed you cease to become agile. Then you really have to start building on the thing you’ve already invested in,” Ashton explains. “In the early stages of technology deployment it’s a charitable act really to explore a new technology because the return on investment isn’t there, it’s too expensive and it’s too unknown. That’s where government has a role.”

Looking ahead, investment in the IoT should continue to increase as more and more senior executives move up the IoT learning curve. According to Witchalls, the costs associated with the IoT will continue to fall concurrently – just like any nascent technology. Indeed, a number of early adopters believe that the technology is already mature enough and cheap enough to make IoT products and services viable without the need for a big upfront investment, at least for initial trials.

“You don’t need a lot of R&D, it’s more about integration,” says Honbo Zhou, a director of China’s Haier. “Everyone can build it [into their products]. It’s just a matter of finding a business model that works.”

Meanwhile, Elgar Fleisch, the deputy dean of ETH Zürich, a science and technology university, says he believes IoT adoption will be quite different from what he dubs the “Internet of people revolution.”

During the first phase of the Internet, he maintains, anyone with a good idea and a computer could start an organization with global reach. However, Fleisch sees the initial advantage in the “IoT revolution” going mainly to bricks-and mortar organizations, especially large firms with many assets to track and monitor. Meaning, we are unlikely to see another Facebook, Yahoo or eBay.

“There will be winners and losers, but we are unlikely to see entirely new big players entering the market,” Fleisch opines.

Notwithstanding the significant involvement of the physical world of assets and products, the IoT is still expected to be a less visible revolution than the traditional Internet.

“PayPal, Groupon and YouTube are well-known Internet companies, yet few people are probably aware that the smart meter in their cellar means that their home is a part of the IoT,” writes Witchalls. “As organizations move towards the ‘productization’ of the IoT, there are signs that business leaders recognize that this need not be a major hindrance: undeveloped consumer awareness is not seen as one of the top obstacles to organizations using the IoT. After all, consumers will always want products and services that are better, cheaper, greener and more convenient.”

As Ashton notes, “Consumers are not going to demand the Internet of Things. Nobody is going to demand the underlying infrastructure.”

Rather, says Ashton, consumers will demand some value and benefit.

“They’re going to demand a security system that they can control from their smartphone. You don’t go to the end user and talk about the Internet of Things. You go to the end user to talk about benefits,” he adds.

Want to learn more about how the IoT revolution is gathering pace and reaching a tipping point? Part one is available here, part two here, part three here and part four here.

IoT - 1:1 Interview Rob van Kranenburg

1:1 interview with Rob van Kranenburg (Part 1)

1:1 Interview conducted by Atmel’s Tom Vu with Rob van Kranenburg, IoT-A Stakeholder Coordinator, Founder of Council, and Adviser to Open Source Internet of Things, osiot.org.

rob-van-kranenburgTV: Why IoT-A? There are a multitude of IoT consortiums important to forging the progress of this next era of connective technology. Why is it important to the general business and mainstream? Why so many consortiums? Will it eventually roll up to one?

RvK: In systemic shifts the next normal is at stake. Of course you have to believe that IoT is a systemic shift first. Paradoxically, it is precisely the fact that we see so many contenders and consortia – no one wants to miss out or be left behind – that IoT is moving from being a vision to a business proposition. The success of the device as a standard – the Steve Jobs approach to controlling hardware, software, connectivity, app store; what goes in and what goes out and who it is friends with – has been an eye opener.

Patrick Moorhead writes in his Forbes piece that “the stunning success of smartphones, followed by similar success for tablets, has pushed the standardization opportunities for next generation infrastructure into play for the top tier of visionary companies”1, listing among others IBM Smarter Planet, Cisco’s Internet Business Solutions Group, Google, IPSO Alliance, ARM, International M2M Council, IoT-A (Internet-of-Things Architecture), and Intel’s Intelligent Systems Framework (ISF).  Software as a service, could only come into existence with the Cloud: “In the 90s, storage disks of less than 30GB capacity were incredibly expensive. Today, thanks to innovations in silicon technology, we are able to get high capacity storage disks at a nominal cost.”2 In the early 2000s we see the first experiments with real-time feedback.

In an earlier post you mention Formula 1. In 2002 Wired published a piece on sailing and the America’s Cup: “We’re trying to find patterns, to see that one set of conditions tends to result in something else. We don’t know why, and we don’t need to, because the answer is in the data.” This a programmer talking, a programmer and a sailor: Katori is writing a program that crunches the measurements and creates a “wind profile number an implied wind,” a wind an implied boat can sail on, as sailing, so long an intuitive art, has become a contest of technology: “Sensors and strain gauges are tracking 200 different parameters every second and sending the information across Craig McCraws OneWorld’s LAN to its chase boats and offices. Then the info gets dumped into a Microsoft SQL database, where it’s sifted to pinpoint the effects of sail and hardware experiments. Unraveling all the input is, in the words of OneWorld engineer Richard Karn, “nearly impossible.” And that’s not all: every day for the past two years, five OneWorld weather boats have headed out into the Gulf to harvest data.”3

I remember how struck I was by that notion of an “implied wind.” Before that notion there was the “real” and the “digital,” two concrete and separate worlds. You could argue that prior to that there was the “real” and the “surreal” or spiritual world. Large groups of people historically have been animists. To them objects do have stories, hold memories, are “actors.” Things are alive in that vision. Introducing this notion of implied, it became clear that it was no longer about the relation between the object and the database, materialized in a “tag,” but that the relation itself was becoming an actor, a player in a world where you did not know why, and you could nor care less why or why not – you wanted to gather data. There is “something” in it.

Grasping this key paradigm shift, it then becomes clear that the stakes are very high. In 2001, Steve Halliday, then vice president of technology at AIM, a trade association for manufacturers of tagging (RFID) technology, interviewed by Charlie Schmidt claimed: “If I talk to companies and ask them if they want to replace the bar code with these tags, the answer can’t be anything but yes. It’s like giving them the opportunity to rule the world.”4 Since then the most publicized attempt to create one single architecture, an Object Name Server, is the story of the RFID standard called “EPC Global” -two standard bodies EAN and UCC merging to become GS1 in 2005. In a bold move that no regulator foresaw, they scaled their unit of data from being in a batch of 10,000 and thus uninteresting for individual consumers to that of the uniquely identifiable item.

TV: Gartner suggest IoT as a #4 business creation factor for the next 5 years. What are your thoughts? Is this true?

Gartner-Hype-Cycle-IoT

Credit: Image obtained from Gartner’s 2012 Hype Cycle for Emerging Technologies Identifies “Tipping Point” Technologies, Unlocking Long-Awaited Technology Scenarios

*****

RvK: Depending on how you define IoT, I would say definitely. Internet of Things influences changes in production (smart manufacturing, mass customization), consumption (economy of sharing, leasing vs ownership), energy (monitoring grids, households and devices), mobility (connected cars), decision making processes (shift to grassroots and local as data, information and project management tools come in the hands of ‘masses’), finance (IoT can sustain more currencies: Bitcoin, bartering, and again ‘leasing’) and creates the potential for convergence of the above shifts into a new kind of state and democratic model based on the notion of “platform.”

It is more an operation on the scale of: before and after the wheel, before and after printing/the book. In a kind of philosophical way you could say that it is the coming alive of the environment as an actor, it touches every human operation. The browser is only 20 years old – Mosaic being the first in 1993. The web has dramatically changed every segmented action in every sequence of operations that make up project management tools in any form of production and consumption. Because of this some people in the EU and elsewhere are trying to change IoT name-wise to something like Digital Transition. The Singularity is another way of looking at it. As a concept it is Borgian in the sense that the next big trends: Nano electronics and (DIY) biology are not in an emergent future realm as time to market could increase exponentially as they are drawn into being grasped within the connectivity that IoT is bringing.

Interested in reading more? Tune into Part 2 of Atmel’s 1:1 interview with Rob van Kranenburg. View Part 2  and Part 3

*****

1 http://www.forbes.com/sites/patrickmoorhead/2013/06/27/how-to-intelligently-build-an-internet-of-things-iot/?goback=%2Egde_73311_member_253757229

2 http://www.ramco.com/blog/5-cost-effective-ways-to-store-data-on-the-cloud

3 Carl Hoffman, Billionaire Boys Cup. High tech hits the high seas in a windblown battle between Craig McCaw and Larry Ellison. Carl Hoffman sets sail with Team OneWorld in the race to take back the America’s Cup.http://www.wired.com/wired/archive/10.10/sailing_pr.html

4 Beyond the Bar Code – High-tech tags will let manufacturers track products from warehouse to home to recycling bin. But what’s great for logistics could become a privacy nightmare. By Charlie Schmidt, March 2001.http://www.technologyreview.com/featuredstory/400913/beyond-the-bar-code/

An introduction to Kevin Ashton’s recent IoT keynote

Recently, a number of industry heavyweights have taken a keen interest in the Internet of Things (IoT). Essentially, the IoT involves various nodes collectively generating a tremendous amount of data.  We know there is a strong emphasis now for the “Things being connected”.  In a small scale, a Formula 1 constructor such as McLaren uses a cluster of sensor nodes to transmit vital telemetry from the pit crew to garage, then to race engineers and ultimately back to R & D centers. During the races, this all happens in realtime. Of course, the customer in this scenario is the driver and engineering team – converging machine logs and other relevant data to ensure a vehicle runs at optimal speed.  During the races, this happens realtime; converging decisive machine log and digital data together to formulate decisive actions toward minor setting adjustments; this results in balancing the force of physics to the engine and car to produce fractions of a competitiveness in seconds.  This equates to a win in the race and competitiveness on the circuit.  Comparatively as a smaller micro-verse, this is the world of Industrial Internet and Internet of Things.

Now let’s imagine this same scenario, albeit on a global scale. Data gathered at crucial “pressure points” can be used to optimize various processes for a wide variety of applications, scaling all the way from consumer devices to manufacturing lines. To be sure, an engine or critical component like a high efficiency diesel Spark Plug is capable of transmitting information in real-time to dealerships and manufacturers, generating added value and increasing consumer confidence in a brand.

Sounds like such a scenario is years away? Not really, as this is already happening with GE and other larger Fortune 500s. Then again, there are still many frontiers to continually innovate. Similar to aviation, its more about building smarter planes, rather than aspiring to a revolution in design. Meaning, building planes capable of transmitting data and implementing actions in real-time due to evolved processes, automation and micro-computing.

Likewise, applications combined with embedded designs also yield improved output. Given the multitude of various mixed and digital signals, efficiency and computing quality factors also play vital roles in the larger system. The GE jet engine featured in one particular plane has the ability to understand 5,000 data samples per second. From larger systems down to the micro embedded board level, it’s all a beautiful play of symphony, akin to the precision of an opera. To carry the analogy further, the main cast are the architects and product extraordinaires who combine intelligent machine data, application logic, cloud and smartly embedded designs to achieve the effect of an autonomous nervous system.

Remember, there are dependencies across the stack and layers of technology even down to the byte level. This helps planes arrive at their destination with less fuel – and keeps them soaring through the sky, taking you wherever you want to go. Ultimately, a system like this can save millions, especially when you take into account the entire fleet of aircraft. It is truly about leveraging intelligent business – requiring connectivity states concerted in a fabric of communication across embedded systems. Clearly, the marriage of machine data and operational use-cases are drawing closer to realization.

“When you’ve got that much data, it had better be good. And reducing the CPU cycles cuts energy use, especially important in applications that use energy harvesting or are battery powered. And that is why Atmel offers a wide range of products mapping to more than the usual embedded design ‘digital palette’ of IoT building blocks. The market needs illustrations and further collaboration; diagrams that show what plays where in the IoT and who covers what layers,” says Brian Hammill, Sr. Atmel Staff Field Applications Engineer.

“Something like the OSI model showing that we the chip vendors live and cover the low level physical layer and some cover additional layers of the end nodes with software stacks. Then, at some point, there is the cloud layer above the application layer in the embedded devices where data gets picked up and made available for backend processing. And above that, you have pieces that analyze, correlate, store, and visualize data and groups of data. Showing exactly where various players (Atmel, ARM mbed (Sensinode), Open Platform for IoT, Ayla Networks, Thingsquare, Zigbee, and other entities and technology) exist and what parts of the overall IoT they cover and make up.”

Atmel offers a product line that encompasses various products that give rise to high end analog to digital converter features.  For example in Atmel’s SAM D20 an ARM based Cortex-M0+, the hardware averaging feature facilitates oversampling.  Oversampling produces sample rates at high resolution.  The demand for high resolution sampling runs congruent to many real-world sensor requirements.  In the world of engineers and the origin of the embedded designs, achieving lean cost by ensuring no extra software overhead – competitive with benefits.  In the design and mass fulfillment of millions of components and bill of materials used to create a multi-collage of global embedded systems, there exist strong ledger point of view – even for engineers, designers, architects, and manufacturing managers.  Ultimately, augment business line directives to fullest ROI.  Expanding the design/experience envelope, Atmel microcontrollers have optimized power consumption.  Brian Hammill concurs, “Atmel offers several MCU families with performance under 150 microamperes/MHz (SAM4L has under 90 uA/MHz, very low sleep current, and flexible power modes that allow operation with good optimization between power consumption, wakeup sources, wakeup time, and maintaining processor resource and memory.”

Geographically, there seems to be a very strong healthcare pull for IoT in Norway, Netherlands, Germany, Sweden and this follows into Finland and other parts of Asia as well as described in Rob van Kragenburg’s travels of IoT in Shanghai and Wuxi. Therein lies regional differences mixed with governance and political support. It is also very apparent that Europe and Asia place an important emphasis on IoT initiatives.

Elsewhere, this is going to happen from bottom-up (groups akin to Apache, Eclipse for the early web, open source, and IDE, and now IoT-A, IoT Forum) in conjunction with top-down (Fortune 500’s) across the span of industry. But first, collaboration must occur to work out the details of architecture, data science and scalability. This is contingent on both legacy systems and modern applications synchronizing and standardizing in the frameworks conceived by open and organizing bodies (meant to unify and standardize) such as IoT-A and IoT-I. Indeed, events like IoT-Week in Helsinki bring together thought leaders, technologist and organizations – all working to unify and promote IoT architecture, IP and cognitive technologies, as well as semantic interoperability.

In the spirit of what is being achieved by various bodies collaborating in Helsinki, Brian Hammill asserts: “The goal of a semiconductor company used to be to provide silicon. Today it is more as we need development tools as well as software stacks. The future means we need also to provide the middleware or some for of interoperability of protocols so that what goes in between the embedded devices and the customers’ applications. I think an IoT Toolkit achieves that in its design.  Atmel also offers 802.15.4 radios, especially the differentiation of the Sub-GHz AT86RF212B versus other solutions that have shorter range and require and consume more power.

We also must provide end application tools for demonstration and testing, which can then serve as starter applications for customers to build upon.”

There will be large enterprise software managing data in the IoT. Vendors such as SAS are providing applications at the top end to manage and present  data in useful ways, especially when it comes to national healthcare. Then there are companies which already know how to deal with big data like Google and major metering corporations such as Elster, Itron, Landis+Gyr and Trilliant. Back in the day, meter data management (MDM) was the closest thing to big data because nobody had thought about or cared to network so many devices.

We tend to think of IoT as a stereotype of sorts – forcing an internet-based interaction onto objects. However, it is really trying to configure the web to add functionality for “things,” all while fundamentally protecting privacy and security for a wide range of objects and devices, helping us shift to the new Internet era. Currently, there a number of organizations and standards bodies working to build out official standards (IETF) that can be ratified and put into engineering compliance motion. Really, it’s all starting to come together, as illustrated by the recent IoT Week in Helsinki which is also working to bring Internet of Things together. Here is IoT’s very own original champion, a leader whom has been working toward promoting the Internet of Things (IoT) for 15 years: Kevin Ashton’s opening talk for the Internet of Things Week in Helsinki (video).

iot-week-partners

Remarks at the opening of Third Internet of Things Week, Helsinki, June 17, 2013:

Thank you, and thank you for asking me to speak at the Third Internet of Things Week. I am sorry I can’t be with you in Helsinki. This is a vibrant and growing community of stakeholders. I am proud to have been a part of it for about 15 years now.

One of the most important things that is going to happen this week is the work on IOT-A.  It is really important to have a reference model architecture for the Internet of Things. And one of the reasons is that for most of those 15 years, we’ve been talking about the Internet of Things as something in the future, and, thanks to amazing work by this community — I would particularly like to recognize  Rob van Kranenburg and Gérald Santucci and the work of the European Union, which has been amazing for many, many years now — the Internet of Things is not the future anymore. The Internet of Things is the present. It is here, now.

I was with an RFID company a month ago who told me that they had sold 2 billion RFID tags last year and were expecting to sell 3 billion RFID tags this year.
rfid-tags

So, just in 2 years, this one company has sold almost as many RFID tags as there are people on the planet. And, of course, RFID is just one tiny part of the Internet of Things, which includes many sensors, many actuators, 3-D printing, and some amazing work in mobile computing and mobile sensing platforms from modern automobiles, which are really now sensors on wheels, and will become more so as, as we move into an age of driverless cars, to the amazing mobile devices we all have in our pockets, that I know some of you are looking at right now. Then there are sensor platforms in the air. There is some really amazing work being done in the civilian sector with drones, or “unmanned aerial vehicles.: that are not weapons of war or tools of government surveillance but are sensor platforms for other things.

And all this amazing technology, which is being brought to life right now, is connected together by the Internet, and we can only imagine what is coming next. But one thing I know for sure is, now that the Internet of Things is the present and not the future, we have a whole new set of problems to solve. And they’re big problems. And they’re to do with architecture, and scalability, and data science. How do we make sure that all the information flowing from these sensors to these control systems is synchronized and harmonized, and can be synthesized in a way that brings meaning to data. It is great that the Internet of Things is here. But we have to recognize we have a lot more work to do.

It is not just important to do the work. It is important to understand why the work is important. The Internet of Things is a world changing technology like no other. We need it now more than ever. There are immeasurable economic benefits and the world needs economic benefits right now. But there is another piece that we mustn’t lose sight of. We depend on things. We can’t eat data. We can’t put data in our cars to make them go. Data will not keep us warm.

And there are more people needing more things than ever before. So unless we bring the power of our information technology — which, today, is mainly based around entertainment, and personal communication, and photographs, and emails — unless we bring the power of our information technology to the world of things, we won’t have enough things to go around.

The human race is going to continue to grow. The quality of our lives is going to continue to grow. The length of our lives is going to continue to grow. And so the task for this new generation of technology and this new generation of technologists is to bring tools to bear on the problems of scaling the human race. It is really that simple. Every generation has a challenge, and this is ours. If we do not succeed, people are going to be hungry, people are going to be sick, people are going to be cold, people are going to be thirsty, and the problems that we suffer from will be more than economic.

I have no doubt that we have to build this network and no doubt [it] is going to help us solve the problems of future generations by doing a much more effective job of how we manage the stuff that we depend on for survival. So, I hope everyone has a great week. It is really important work. I am delighted to be a small part of it. I am delighted that you all are in Helsinki right now. May you meet new people, make new friends, build great new technology. Have a great week.