Tag Archives: IoE

IoT-A Architecture Logo

1:1 interview with Rob van Kranenburg (Part 3)

RvK: Around 2000 it became clear to me that too few stakeholder were negotiating this paradigm shift. IoT literally is, without exaggeration, about global domination for whoever who ensures inter-operability through his standards, protocols and legal formatting. It must be a public IoT if we want to ensure the largest and most inclusive playing field of free men, women, animals and machines who through the best possible resource allocation and decision-making are able to live in harmony with each other and the environment. rob-iot-shanghai

For the past 10 years I have been talking to political and civil servant decision makers. My story was and is that this transparency and full traceability is not an attack on their system. In fact they played a vital role in providing democratic tools such as education, libraries, relatively open access to knowledge. Yet they have no more agency in this current age. A large majority in the previous Chinese government were engineers. The new Premier is a chemical engineer. The country is already run like Google (which has about the same ration engineers/non-engineers). In the West our politicians are fundamentally unable to grasp that their skills and toolsets (and ego’s) have become irrelevant. The civil servants I talk to understand they have no more managerial role in the (semi) autonomous grids they have build themselves, but do not want to let go for fear of losing prestige, a pension, a “position.” Throughout history such paradigmatic shifts have led to revolution, breakdown and loss of life and resources. It is the task and duty of the current IoT engineering community to help these forces understand that we can facilitate their skillsets to move over into more networked organizations.

TV: Describe the foundation of the IoT consortium? Why is it important for organizations in technology to map to these requirements ensuring such use-cases are adopted? What is the integral center-piece? Any rule of thumb such as aligning with Efficiency? Cost? Experience? Customer? or Multi-Faceted?

RvK: This is indeed a key issue. It is about the nature of value. No one is making money with IoT at the moment beyond the boring low hanging fruit of optimizing, efficiency and pre-pre figuring out predictive maintenance; nickles and dimes. These do add up of course on a global scale but even there at one moment every object is tagged with a barcode, QR code, NFC, RFID, monitoring device. Cisco has grasped the implications and is selling its hardware and is moving into output based business models, occupying the very moments where the data becomes meaningful to the customer entangling customer relation management of their client clients with their own formats of making the data legible to them in the first place. Imagine a giant like Cisco having to go through the nitty gritty of identifying 21 use cases (including the ‘smart toilet’) and imagine the savvy people trying to sell that to the Board as their only way of survival: trying to get through the next three to five years making pennies of these use cases, just to stay afloat in order to be the new hegemony in a world that has become fully traceable by then. Quite a feat I’d say.  The real value of IoT will only be visible if it is embraced, trusted and really wanted by the people. One can imagine a business model of providing neighborhood servers, amassing all data anonymous, selling or auctioning it to providers who enrich it and play back scenarios that you might want to buy into on the full spectrum from housing to mobility, from food to health, from better sleep advice to matchmaking skill sets and providing work (not ‘jobs’).

TV: The appeal for IoT has taken the stage globally now. How are you involved in the IoT China Consortium and what are the drivers regionally? Do they have distinct differentiators across other regions for IoT? IOT_China_2013

RvK: I was asked to moderate the first IoT Conference in Beijing in 2010. In the conversations prior to that I realized from the questions how savvy the Chinese organizers were. No wonder given the fact that most top politicians are engineers. In 2005 a Whitepaper on RFID was published. It was released by 15 Ministries and Commissions, including the Ministry of Science and Technology. To build that level of integration between your Ministries means that the channels to communicate and understand a technological paradigm shift underlies the entire structure. The same might be said to be true of the US, but with a difference that in the US half your tax dollars go to the military which is building a similar structure (as we see now in the revelations of Manning and Snowden) but fully closed without any sense that this cybernetic harness could be used for something else then security and isolating data.

In fact, negotiating with the top military is what needs to happen fast by the top IoT US companies – Cisco, IBM, Google, Apple, GE, Microsoft, or else they will suffer greatly from the lack of trust that globally is beginning to take shape. And as we know, trust is the key to making money and adding value in IoT. Imagine if they could do what RAND did after WWII, take the entire field to a new plane: space in their case. Imagine that negotiations could start on how the entire USA, or maybe even the whole world, could benefit from opening up this military infrastructure and use it for sharing and cooperation?

For the past two years I have been involved in helping to program and shape the IOT China Conference in Shanghai and I have been struck by the enthusiasm and the positive attitude towards monitoring – and why should that not be? IoT can help clean the air, provide better food from farm to fork, solutions to the crazy car ownership notions, streamline energy from infrastructure to devices (why should you ‘own’ your washing machine? Is that what life is about? ‘Owning things?). iot-a-internet-of-things-architecture

My point is very simple and I make it everywhere. If we want a better balance between humans, animals, resources and the planet we should take control of infrastructure that should be fully open, modular and public. All data coming from that platform should be open to the public to build better services and better iterations of the infrastructure. I think I can safely say that the Chinese leadership also knows that if it wants to make full use of the creative potential of this younger generation, that it should stop any kind of censorship on content level, but precisely open all data sets and allow all stakeholders to work in the public interest. If all is in the open, it is very difficult to be corrupt or to isolate data for a long time. Building the best balance between open and closed on a platform will be the biggest challenge. Whoever gets that right will have the hegemony in the 21th century.

TV: What vertical industry or player do you see playing a major role in fulfilling at least a major part of IoT concepts then reciprocating this back to the customer?

RvK: Given the current global crisis the focus is not so much on the home and housing, but I think about the Connected Car. The revenue streams are as solid as possible. The younger generation is buying less cars, but still sharing them. Fleet management is relatively stable. China and Africa are growing markets. Automotive is both a vertical as well as a horizontal. It makes it possible for Apple for example to sell hands free Siri across a range of brands. Google can sell its expertise of autonomous driving. Synching data from home, work, and even ehealth with the sensors in the car allows for the ‘seamless’ experience. People like driving cars, they won’t easily give up this sense of ‘freedom’ (even if they are in traffic standing still in most mega-cities).

TV: What are the differentiators between IoT, IoE, Industrial Internet? Do you see an overlap, is there a need to coin the evolution into a unified technological disruption?

RvK: Internet of Things is a term coined by Kevin Ashton that was timely and productive, and it still is. To the researchers doing ubicomp, pervasive computing and ambient intelligence it must be a bit sour that people start googling ‘Internet of Things’ and are not finding their work. So yes, there is a huge overlap between the cybernetics from mid last century, McLuhan, Mark Weiser, the pervasive and calm computing groups and AmI (ambient intelligence). The new terms coined by the big boys is just marketing. Smart Planet, IoE, Industrial Internet have the same roots. The focus might be slightly different. IBM sees the smart city as the business model for IoT (just lease everything in a gated community), Cisco wants to draw attention away from end to end connections only and focuses on intelligence at the edge of the network, in the devices (one can imagine routers that could be enhanced with robotic qualities; drone routers), therefore the ‘Everything’ and in a mail conversation I had with GE on the name, that I thought was retro leaving out all the DIY, Maker movementKickstarter, open hardware and bottom up qualities of IoT, I was informed that with that name they refer to huge and mission critical infrastructure and services thinking very little of that messiness on the ground. I think such thinking is a huge mistake. There is no more top, down, middle. We are in the network now and becoming a supernode means that you take each and every stakeholder (even to the level of one/the super-empowered individual/lone entrepreneur) extremely serious.

TV: We have seen how Social Networks changed things from all places. How does IoT affect culture, poverty, business, and earthly things such as humanity? What does it take for this to clearly show?

RvK: We see the effects most clearly in the fact that the creative elites are able to organize with cheap tools on the web now. In fact, Council too is just a website and I post everything myself. Membership is free and all the Knowledge Partnerships I have done so far are done without money, simply swapping logo’s. We see it in organized and semi organized networks such as Anonymous, Wikileaks and all kinds of new initiatives on Kickstarter, itself a good example of bottom up funding for those without resources like money, heritage or institutional power. The Internet and IoT is a meritocracy. All you need is time, intelligence, focus and perseverance, belief and hope maybe too. The cracks in the all old system power – banking, government and security agencies, hereditary forms of authority – are beginning to show because as a bright geek or activist you are no longer dependent on their ‘salons’, ‘projects’, ‘creative industries’.

You just start your own team and if you are good the brightest will find you, immediately or eventually, like in the Coolio song ‘I’ll see you when you get there’. What this means for the world? Only good things, a thorough shift from forces of competition, to forces of cooperation and sharing. Monitoring resources eventually eradicates corruption and mafia (this is already happening). There is no longer a role for the state, nor the current actors that make up states. The future is in ‘platforms’ and a Steve Jobs model of dedicated devices talking to particular platforms where citizens manage services, taxes and identities. Again it is our task to help the current actors to see this as a logical and normal generational and technical operation that they should not stall or perceive as a threat, but welcome as a joint responsibility of much more stakeholders.

TV: How can a business line manager, Executive for Engineering, CEO, or Founder take evolve a product or business in to IoT centric characteristics and IoT customer-centric experience?

RvK: For the past two years now I have posted a course on Internet of Things on a Dutch portal for courses where people that are working go to find out to learn about the latest trends. They flock to courses on social media and Twitter but so far I have no takers, none at all!  After a while I realized that if you are working or running a business you do not see ‘IoT’, no you simply start to worry or be a bit surprised that you see clients you never saw before, new types of customers that come for a problem or a solution that does not fit your current business model. The trick is to go and talk to your competitors now as they probably experience the same issue with your service or product and jointly look for IoT type of solutions, taking it together to a whole new level.

From that point on you lower structural costs to a minimum as you share them and compete on issues tailored to specific needs of clients. It is for these kinds of situations, as well as for in house consultancy: talking to basically everybody in the company – that we set up IoP Limited in London recently with Lorna Goulden (ex Philips), Martin Spindler (specializing in energy) and Alex Deschamps Sonsino (ex Arduino and Tinker, now Goodnight Lamp and IoT Meetups London). We have learned that basically the major issue is the balance between good old fashioned change management  and technical potential in every given business, that will determine the successful implementation of new business models.

This concludes Atmel’s 1:1 interview with Rob van Kranenburg.  View Part 1 and Part 2.

IoT - 1:1 Interview Rob van Kranenburg

1:1 interview with Rob van Kranenburg (Part 1)

1:1 Interview conducted by Atmel’s Tom Vu with Rob van Kranenburg, IoT-A Stakeholder Coordinator, Founder of Council, and Adviser to Open Source Internet of Things, osiot.org.

rob-van-kranenburgTV: Why IoT-A? There are a multitude of IoT consortiums important to forging the progress of this next era of connective technology. Why is it important to the general business and mainstream? Why so many consortiums? Will it eventually roll up to one?

RvK: In systemic shifts the next normal is at stake. Of course you have to believe that IoT is a systemic shift first. Paradoxically, it is precisely the fact that we see so many contenders and consortia – no one wants to miss out or be left behind – that IoT is moving from being a vision to a business proposition. The success of the device as a standard – the Steve Jobs approach to controlling hardware, software, connectivity, app store; what goes in and what goes out and who it is friends with – has been an eye opener.

Patrick Moorhead writes in his Forbes piece that “the stunning success of smartphones, followed by similar success for tablets, has pushed the standardization opportunities for next generation infrastructure into play for the top tier of visionary companies”1, listing among others IBM Smarter Planet, Cisco’s Internet Business Solutions Group, Google, IPSO Alliance, ARM, International M2M Council, IoT-A (Internet-of-Things Architecture), and Intel’s Intelligent Systems Framework (ISF).  Software as a service, could only come into existence with the Cloud: “In the 90s, storage disks of less than 30GB capacity were incredibly expensive. Today, thanks to innovations in silicon technology, we are able to get high capacity storage disks at a nominal cost.”2 In the early 2000s we see the first experiments with real-time feedback.

In an earlier post you mention Formula 1. In 2002 Wired published a piece on sailing and the America’s Cup: “We’re trying to find patterns, to see that one set of conditions tends to result in something else. We don’t know why, and we don’t need to, because the answer is in the data.” This a programmer talking, a programmer and a sailor: Katori is writing a program that crunches the measurements and creates a “wind profile number an implied wind,” a wind an implied boat can sail on, as sailing, so long an intuitive art, has become a contest of technology: “Sensors and strain gauges are tracking 200 different parameters every second and sending the information across Craig McCraws OneWorld’s LAN to its chase boats and offices. Then the info gets dumped into a Microsoft SQL database, where it’s sifted to pinpoint the effects of sail and hardware experiments. Unraveling all the input is, in the words of OneWorld engineer Richard Karn, “nearly impossible.” And that’s not all: every day for the past two years, five OneWorld weather boats have headed out into the Gulf to harvest data.”3

I remember how struck I was by that notion of an “implied wind.” Before that notion there was the “real” and the “digital,” two concrete and separate worlds. You could argue that prior to that there was the “real” and the “surreal” or spiritual world. Large groups of people historically have been animists. To them objects do have stories, hold memories, are “actors.” Things are alive in that vision. Introducing this notion of implied, it became clear that it was no longer about the relation between the object and the database, materialized in a “tag,” but that the relation itself was becoming an actor, a player in a world where you did not know why, and you could nor care less why or why not – you wanted to gather data. There is “something” in it.

Grasping this key paradigm shift, it then becomes clear that the stakes are very high. In 2001, Steve Halliday, then vice president of technology at AIM, a trade association for manufacturers of tagging (RFID) technology, interviewed by Charlie Schmidt claimed: “If I talk to companies and ask them if they want to replace the bar code with these tags, the answer can’t be anything but yes. It’s like giving them the opportunity to rule the world.”4 Since then the most publicized attempt to create one single architecture, an Object Name Server, is the story of the RFID standard called “EPC Global” -two standard bodies EAN and UCC merging to become GS1 in 2005. In a bold move that no regulator foresaw, they scaled their unit of data from being in a batch of 10,000 and thus uninteresting for individual consumers to that of the uniquely identifiable item.

TV: Gartner suggest IoT as a #4 business creation factor for the next 5 years. What are your thoughts? Is this true?

Gartner-Hype-Cycle-IoT

Credit: Image obtained from Gartner’s 2012 Hype Cycle for Emerging Technologies Identifies “Tipping Point” Technologies, Unlocking Long-Awaited Technology Scenarios

*****

RvK: Depending on how you define IoT, I would say definitely. Internet of Things influences changes in production (smart manufacturing, mass customization), consumption (economy of sharing, leasing vs ownership), energy (monitoring grids, households and devices), mobility (connected cars), decision making processes (shift to grassroots and local as data, information and project management tools come in the hands of ‘masses’), finance (IoT can sustain more currencies: Bitcoin, bartering, and again ‘leasing’) and creates the potential for convergence of the above shifts into a new kind of state and democratic model based on the notion of “platform.”

It is more an operation on the scale of: before and after the wheel, before and after printing/the book. In a kind of philosophical way you could say that it is the coming alive of the environment as an actor, it touches every human operation. The browser is only 20 years old – Mosaic being the first in 1993. The web has dramatically changed every segmented action in every sequence of operations that make up project management tools in any form of production and consumption. Because of this some people in the EU and elsewhere are trying to change IoT name-wise to something like Digital Transition. The Singularity is another way of looking at it. As a concept it is Borgian in the sense that the next big trends: Nano electronics and (DIY) biology are not in an emergent future realm as time to market could increase exponentially as they are drawn into being grasped within the connectivity that IoT is bringing.

Interested in reading more? Tune into Part 2 of Atmel’s 1:1 interview with Rob van Kranenburg. View Part 2  and Part 3

*****

1 http://www.forbes.com/sites/patrickmoorhead/2013/06/27/how-to-intelligently-build-an-internet-of-things-iot/?goback=%2Egde_73311_member_253757229

2 http://www.ramco.com/blog/5-cost-effective-ways-to-store-data-on-the-cloud

3 Carl Hoffman, Billionaire Boys Cup. High tech hits the high seas in a windblown battle between Craig McCaw and Larry Ellison. Carl Hoffman sets sail with Team OneWorld in the race to take back the America’s Cup.http://www.wired.com/wired/archive/10.10/sailing_pr.html

4 Beyond the Bar Code – High-tech tags will let manufacturers track products from warehouse to home to recycling bin. But what’s great for logistics could become a privacy nightmare. By Charlie Schmidt, March 2001.http://www.technologyreview.com/featuredstory/400913/beyond-the-bar-code/

An introduction to Kevin Ashton’s recent IoT keynote

Recently, a number of industry heavyweights have taken a keen interest in the Internet of Things (IoT). Essentially, the IoT involves various nodes collectively generating a tremendous amount of data.  We know there is a strong emphasis now for the “Things being connected”.  In a small scale, a Formula 1 constructor such as McLaren uses a cluster of sensor nodes to transmit vital telemetry from the pit crew to garage, then to race engineers and ultimately back to R & D centers. During the races, this all happens in realtime. Of course, the customer in this scenario is the driver and engineering team – converging machine logs and other relevant data to ensure a vehicle runs at optimal speed.  During the races, this happens realtime; converging decisive machine log and digital data together to formulate decisive actions toward minor setting adjustments; this results in balancing the force of physics to the engine and car to produce fractions of a competitiveness in seconds.  This equates to a win in the race and competitiveness on the circuit.  Comparatively as a smaller micro-verse, this is the world of Industrial Internet and Internet of Things.

Now let’s imagine this same scenario, albeit on a global scale. Data gathered at crucial “pressure points” can be used to optimize various processes for a wide variety of applications, scaling all the way from consumer devices to manufacturing lines. To be sure, an engine or critical component like a high efficiency diesel Spark Plug is capable of transmitting information in real-time to dealerships and manufacturers, generating added value and increasing consumer confidence in a brand.

Sounds like such a scenario is years away? Not really, as this is already happening with GE and other larger Fortune 500s. Then again, there are still many frontiers to continually innovate. Similar to aviation, its more about building smarter planes, rather than aspiring to a revolution in design. Meaning, building planes capable of transmitting data and implementing actions in real-time due to evolved processes, automation and micro-computing.

Likewise, applications combined with embedded designs also yield improved output. Given the multitude of various mixed and digital signals, efficiency and computing quality factors also play vital roles in the larger system. The GE jet engine featured in one particular plane has the ability to understand 5,000 data samples per second. From larger systems down to the micro embedded board level, it’s all a beautiful play of symphony, akin to the precision of an opera. To carry the analogy further, the main cast are the architects and product extraordinaires who combine intelligent machine data, application logic, cloud and smartly embedded designs to achieve the effect of an autonomous nervous system.

Remember, there are dependencies across the stack and layers of technology even down to the byte level. This helps planes arrive at their destination with less fuel – and keeps them soaring through the sky, taking you wherever you want to go. Ultimately, a system like this can save millions, especially when you take into account the entire fleet of aircraft. It is truly about leveraging intelligent business – requiring connectivity states concerted in a fabric of communication across embedded systems. Clearly, the marriage of machine data and operational use-cases are drawing closer to realization.

“When you’ve got that much data, it had better be good. And reducing the CPU cycles cuts energy use, especially important in applications that use energy harvesting or are battery powered. And that is why Atmel offers a wide range of products mapping to more than the usual embedded design ‘digital palette’ of IoT building blocks. The market needs illustrations and further collaboration; diagrams that show what plays where in the IoT and who covers what layers,” says Brian Hammill, Sr. Atmel Staff Field Applications Engineer.

“Something like the OSI model showing that we the chip vendors live and cover the low level physical layer and some cover additional layers of the end nodes with software stacks. Then, at some point, there is the cloud layer above the application layer in the embedded devices where data gets picked up and made available for backend processing. And above that, you have pieces that analyze, correlate, store, and visualize data and groups of data. Showing exactly where various players (Atmel, ARM mbed (Sensinode), Open Platform for IoT, Ayla Networks, Thingsquare, Zigbee, and other entities and technology) exist and what parts of the overall IoT they cover and make up.”

Atmel offers a product line that encompasses various products that give rise to high end analog to digital converter features.  For example in Atmel’s SAM D20 an ARM based Cortex-M0+, the hardware averaging feature facilitates oversampling.  Oversampling produces sample rates at high resolution.  The demand for high resolution sampling runs congruent to many real-world sensor requirements.  In the world of engineers and the origin of the embedded designs, achieving lean cost by ensuring no extra software overhead – competitive with benefits.  In the design and mass fulfillment of millions of components and bill of materials used to create a multi-collage of global embedded systems, there exist strong ledger point of view – even for engineers, designers, architects, and manufacturing managers.  Ultimately, augment business line directives to fullest ROI.  Expanding the design/experience envelope, Atmel microcontrollers have optimized power consumption.  Brian Hammill concurs, “Atmel offers several MCU families with performance under 150 microamperes/MHz (SAM4L has under 90 uA/MHz, very low sleep current, and flexible power modes that allow operation with good optimization between power consumption, wakeup sources, wakeup time, and maintaining processor resource and memory.”

Geographically, there seems to be a very strong healthcare pull for IoT in Norway, Netherlands, Germany, Sweden and this follows into Finland and other parts of Asia as well as described in Rob van Kragenburg’s travels of IoT in Shanghai and Wuxi. Therein lies regional differences mixed with governance and political support. It is also very apparent that Europe and Asia place an important emphasis on IoT initiatives.

Elsewhere, this is going to happen from bottom-up (groups akin to Apache, Eclipse for the early web, open source, and IDE, and now IoT-A, IoT Forum) in conjunction with top-down (Fortune 500’s) across the span of industry. But first, collaboration must occur to work out the details of architecture, data science and scalability. This is contingent on both legacy systems and modern applications synchronizing and standardizing in the frameworks conceived by open and organizing bodies (meant to unify and standardize) such as IoT-A and IoT-I. Indeed, events like IoT-Week in Helsinki bring together thought leaders, technologist and organizations – all working to unify and promote IoT architecture, IP and cognitive technologies, as well as semantic interoperability.

In the spirit of what is being achieved by various bodies collaborating in Helsinki, Brian Hammill asserts: “The goal of a semiconductor company used to be to provide silicon. Today it is more as we need development tools as well as software stacks. The future means we need also to provide the middleware or some for of interoperability of protocols so that what goes in between the embedded devices and the customers’ applications. I think an IoT Toolkit achieves that in its design.  Atmel also offers 802.15.4 radios, especially the differentiation of the Sub-GHz AT86RF212B versus other solutions that have shorter range and require and consume more power.

We also must provide end application tools for demonstration and testing, which can then serve as starter applications for customers to build upon.”

There will be large enterprise software managing data in the IoT. Vendors such as SAS are providing applications at the top end to manage and present  data in useful ways, especially when it comes to national healthcare. Then there are companies which already know how to deal with big data like Google and major metering corporations such as Elster, Itron, Landis+Gyr and Trilliant. Back in the day, meter data management (MDM) was the closest thing to big data because nobody had thought about or cared to network so many devices.

We tend to think of IoT as a stereotype of sorts – forcing an internet-based interaction onto objects. However, it is really trying to configure the web to add functionality for “things,” all while fundamentally protecting privacy and security for a wide range of objects and devices, helping us shift to the new Internet era. Currently, there a number of organizations and standards bodies working to build out official standards (IETF) that can be ratified and put into engineering compliance motion. Really, it’s all starting to come together, as illustrated by the recent IoT Week in Helsinki which is also working to bring Internet of Things together. Here is IoT’s very own original champion, a leader whom has been working toward promoting the Internet of Things (IoT) for 15 years: Kevin Ashton’s opening talk for the Internet of Things Week in Helsinki (video).

iot-week-partners

Remarks at the opening of Third Internet of Things Week, Helsinki, June 17, 2013:

Thank you, and thank you for asking me to speak at the Third Internet of Things Week. I am sorry I can’t be with you in Helsinki. This is a vibrant and growing community of stakeholders. I am proud to have been a part of it for about 15 years now.

One of the most important things that is going to happen this week is the work on IOT-A.  It is really important to have a reference model architecture for the Internet of Things. And one of the reasons is that for most of those 15 years, we’ve been talking about the Internet of Things as something in the future, and, thanks to amazing work by this community — I would particularly like to recognize  Rob van Kranenburg and Gérald Santucci and the work of the European Union, which has been amazing for many, many years now — the Internet of Things is not the future anymore. The Internet of Things is the present. It is here, now.

I was with an RFID company a month ago who told me that they had sold 2 billion RFID tags last year and were expecting to sell 3 billion RFID tags this year.
rfid-tags

So, just in 2 years, this one company has sold almost as many RFID tags as there are people on the planet. And, of course, RFID is just one tiny part of the Internet of Things, which includes many sensors, many actuators, 3-D printing, and some amazing work in mobile computing and mobile sensing platforms from modern automobiles, which are really now sensors on wheels, and will become more so as, as we move into an age of driverless cars, to the amazing mobile devices we all have in our pockets, that I know some of you are looking at right now. Then there are sensor platforms in the air. There is some really amazing work being done in the civilian sector with drones, or “unmanned aerial vehicles.: that are not weapons of war or tools of government surveillance but are sensor platforms for other things.

And all this amazing technology, which is being brought to life right now, is connected together by the Internet, and we can only imagine what is coming next. But one thing I know for sure is, now that the Internet of Things is the present and not the future, we have a whole new set of problems to solve. And they’re big problems. And they’re to do with architecture, and scalability, and data science. How do we make sure that all the information flowing from these sensors to these control systems is synchronized and harmonized, and can be synthesized in a way that brings meaning to data. It is great that the Internet of Things is here. But we have to recognize we have a lot more work to do.

It is not just important to do the work. It is important to understand why the work is important. The Internet of Things is a world changing technology like no other. We need it now more than ever. There are immeasurable economic benefits and the world needs economic benefits right now. But there is another piece that we mustn’t lose sight of. We depend on things. We can’t eat data. We can’t put data in our cars to make them go. Data will not keep us warm.

And there are more people needing more things than ever before. So unless we bring the power of our information technology — which, today, is mainly based around entertainment, and personal communication, and photographs, and emails — unless we bring the power of our information technology to the world of things, we won’t have enough things to go around.

The human race is going to continue to grow. The quality of our lives is going to continue to grow. The length of our lives is going to continue to grow. And so the task for this new generation of technology and this new generation of technologists is to bring tools to bear on the problems of scaling the human race. It is really that simple. Every generation has a challenge, and this is ours. If we do not succeed, people are going to be hungry, people are going to be sick, people are going to be cold, people are going to be thirsty, and the problems that we suffer from will be more than economic.

I have no doubt that we have to build this network and no doubt [it] is going to help us solve the problems of future generations by doing a much more effective job of how we manage the stuff that we depend on for survival. So, I hope everyone has a great week. It is really important work. I am delighted to be a small part of it. I am delighted that you all are in Helsinki right now. May you meet new people, make new friends, build great new technology. Have a great week.

 

1:1 interview with Michael Koster

Series 3 – Why IoT Matters?


By Tom Vu, Digital Manifesto and Michael Koster, Internet of Things Council Member


Three-part Interview Series (Part 3)


Tom Vu (TV):  Describe how Internet of Things matters? Why should anyone care? Should futurist, technologist, data hounds, product extraordinaires, executives, and  common consumer need to understand what’s to come?

Michael Koster (MK):

There are two main effects we see in the Internet of Things. First, things are connected to a service that manages them. We can now monitor things, predict when they break, know when they are being used or not, and in general begin to exploit things as managed resources.

The second, bigger effect comes from the Metcalfe effect, or simply the network effect, of connecting things together. Bob Metcalfe once stated that the value of a communications network is proportional to the square of the number of connected compatible communicating devices. Since then it’s used to refer to users, but maybe Bob was thinking way ahead. Notice the word compatible. In this context, it means to be able to meaningfully exchange data.

When we connect physical objects to the network, and connect them together in such a way as to manage them as a larger system, we can exploit the Metcalfe effect applied to the resources. We are converting capital assets into managed resources and then applying network management.

Because Internet of Things will be built as a physical graph, it’s socialization of everything, from simple everyday devices to industrial devices. Metcalfe states that 10X connections is 100 times the value.  Cisco is projecting that the Internet of Everything has the potential to grow global corporate profits by 21 percent in aggregate by 2022. I believe these represent a case for pure information on one end, and an average efficiency gain over all of industry on the other.

This has the potential to change things from a scarcity model, where the value is in restricting access to resources, thus driving up price, to a distribution centered model, where value is in the greater use of the resource.  Connecting things to the network is going to reverse the model, from a model of “excluding access” to “inclusion access”, a model where you push toward better experience for consumer/customer/co-business.

Crowdsourcing of things is an example, where models are inverted.  The power arrow is going in the opposite direction, a direction equalizing toward the benefit of the massive body consumers and people.  This in turn, helps shift the business model from a customer relationship managed by vendors, also called advertising, to vendor relationship managed by customers. This is called Vendor Relationship Management, or VRM, pioneered by Doc Searls. This reverses the power arrow to point from customer needs toward business capability to meet needs, and needs are met now that the vendor is listening.  A lot of this is not just IoT but also open source nature, and the big changes happening in people, where sharing being held more valuable than the exclusion of access.

Inverting the value model, breaking down artificially bloated value chains, creating a more efficient economy, I believe it important to create a layer of connectivity that will act as the necessary catalyst to the next Internet of Everything, Internet of Things, Industrial Internet.  Break down the scarcity-based models, exclusion of access, turn it around. Instead of excluding access and driving prices up for limited resources, we will yield higher more efficient utilization of resources.

michael-koster-2-Maker-Faire-2013-SanMateo-Atmel-Maker-Movement

Michael Koster describing Internet of Things and the Maker Movement and Open Source Importance of this Development with Booth attendees at Maker Faire 2013 in San Mateo

It matters on a Global Scale, by giving us better resource utilization. SMART Grid alone has resulted in up to 19.5% efficiency improvement, with an average of 3.8% improvement over all deployments already. We do not have enough energy storage or transmission capacity to deal with the major shift to solar energy sources now in progress worldwide. We are going to have to adapt, learn, monitor, manage, and control our usage in ways only possible with large scale sensing and control.

For the spirit of IoT, it’s not only in making peoples/consumers lives more convenient, solving their first world problems, but its more in the ability to manage resources together as a larger system, from the individual out to a global scale. Especially, this holds true with the effects of globalization, balancing, localization, connectivity, and ubiquity.  It’s for the people.  Social Media had it’s transformation across many things, Internet of Things will also have an efficiency and business transformation.

Companies like Atmel play an important role in creating the building blocks for embedded control and connectivity by means of progressing the ARM / AVR / Wireless / Touch portfolio of products, all of which are the necessary thinking and connecting glue of the Internet of Things. Internet of Things has a large appetite for ultra low power connectivity using wireless standards.  Wireless Sensor Networks are key technology for the IoT, so much that WSN was probably the number one issue in the early deployment. There are many competing standards: Zigbee, SA100.11, Bluetooth, Body Area Network, Wi-Fi Direct, NFC, Z-Wave, EnOcean, KNX, XRF, WiFi, RFID, RFM12B, IEEE 802.15.4 (supporting WPAN such as ZigBee, ISA100.11a, WirelessHART, IrDA, Wireless USB, Bluetooth, Z-wave, Body Area Network, and MiWi).

michael-koster-Maker-Faire-2013-SanMateo-Atmel-Maker-Movement

Michael Koster Exhibiting with Atmel Booth at Maker Faire 2013 San Mateo

Tom Vu (TV):  What would be the most important design decision that supersedes the eventual success of an open source Internet of Things compliance?

Michael Koster (MK):

The first most important decisions are to do open source design based on needs and use cases. I don’t think we can build an IoT if its not open source, or if it’s not connected to the real world use cases.

Just like the Internet, built on open source and open standards, the starting data models are important for building on and building out. HTML and http and URLs allowed many platforms to be built for the web and supersede each other over time, for example Server Pages, SOAP, Javascript, and AJAX. A browser can understand all of the current platforms because they are all based on common abstractions. We believe that the Semantic Web provides a solid basis of standard web technology on which to base the data models.

Tom Vu (TV):  Describe the importance of Internet of Things silos and other M2M standards currently at large in the development community? What are the differences?

Michael Koster (MK):

The IoT has started off fueled by crowdfunding, VC money and other sources that have to some extent built on a business model based on vertical integration. Vertical integration has a big advantage; you need to have a self-contained development to get things done quickly for proof of concept and demonstration.

Vertical integration is also a big driver of the current machine-to-machine, or M2M, communication market. This is the paradigm supporting the initial deployment of connecting things to services for management on an individual thing basis.

The downside of vertical integration is that it leads to silos, where the code developed for a system, the data collected, and even the user interfaces are all unique to the system and not reusable in other systems. Moreover, the vertical integration is often seen as a proprietary advantage and protected through patents and copyrights that are relatively weak because they apply to commonly known patterns and methods.

It’s not always this way, though. As an example, the Eclipse foundation is open source, allowing their M2M system to be used for vertical application development as well as integrated with IoT Toolkit data models and APIs to enable interoperability with other platforms.

The European Telecommunications Standardization Institute, or ETSI, also has an M2M gateway that is a combination of open source and paid license code. New features are enabled through Global Enablers or GEs that implement a particular function using an OSGi bundle consisting of Java code. The Smart Object API can be built into ETSI through a GE bundle, which will enable an ETSI M2M instance to inter-operate with other IoT Toolkit instances. This is the power of the approach we’re taking for interoperability, which is obtained by adding a Smart Object API layer to the system.

Tom Vu (TV):  Explain horizontal and service interoperability for Internet of Things, why is it so important?

Michael Koster (MK):

Connected things connect through WSN gateways and routers to Internet services that fulfill the application logic for the user. Today, for the most part, each vendor provides a cloud service for the devices they sell, e.g. Twine, Smart Things, or the Nest thermostat. There are also some cloud services that allow any connection, providing an API for anyone to connect, for the purpose of integrating multiple devices. But the dedicated devices mentioned earlier don’t work with the generic cloud services.

Many IoT services today are based on providing easy access to the devices and gateway, with open source client code and reference hardware designs, selling hardware on thin margins, and Kickstarter campaigns. There is typically a proprietary cloud service with a proprietary or ad-hoc API from the device or gateway to the service, and a structured API to the service offering “cooked” data.

These systems contain a highly visible open source component, but much of the functionality comes from the cloud service. If a user wishes to use the open source part of the system with another service, the APIs will need to be adapted on either the device/gateway end or service end, or both. It’s not exactly a lock-in, but there is a fairly steep barrier to user choice.

IoT in Silos

Internet of Things (IoT) in Silos

There is the beginning of an ecosystem here, where some devices are being built to use existing services, e.g. Good Night Lamp uses Cosm as their cloud service. Other services that allow open API connectivity include Thingworx and Digi Device Cloud. These services all use very similar RESTful APIs to JSON and XML objects, but have different underlying data models. As a result, sensors and gateways must be programmed for each service they need to interact with.

The current system also leaves users vulnerable to outages of a single provider. Even if there was a programmable cloud service that all could connect to that ran user applications, there would be a vulnerability to provider outages. Much better and more robust would be an ability to configure more than one service provider in parallel in an application graph, for a measure of robustness in the face of service outages. Even more, it should be possible to run user application code in IoT gateways, local user-owned servers, or user-managed personal cloud services. Today’s infrastructure and business models are at odds with this level of robustness for users.

In terms of business and business models, a lot of the connection and network infrastructure today was built on a “value chain” model. These are businesses that are built on a model of vertical integration. In these models, value is added by integrating services together to serve one function, hence vertical.  With the Internet of Things, traditional value chains are collapsing down and flattening. There is a bit of a disruption in the business model (services, etc), but also new opportunities emerge to create new Internet of Things services, which is good for business and consumers.

Companies will continue to build out vertical models to specialize in their services. IoT can potentially augment service models with the customer even further and offer creative possibilities of cost savings and experience and deploy more customer centric business fabrics, which will result in better service for consumers.

If companies build their vertically based infrastructure of applications integrating into the IoT Toolkit platform, the basic enablement for horizontal connections will already exist, making it easy to create horizontal, integrative applications based on automatic resource discovery and linkage.

Access to the knowledge can enhance the customer experience and ROI for businesses.  We are at the brink of the new era, where companies and products can arise from the information economy; only now motivation via implicit or explicit engagement is tied to things, assets, information, sensors, education, and augmentation; and everything is more intertwined and involved.

Tom Vu (TV):  Please assume the role of a futurist or even contemporary pragmatist. How does the landscape of Internet of Things fit into that picture for an individual?

Michael Koster (MK):

It goes back to the idea that your life is going to change in ways that we are no longer be driven by the scarcity pressures we experienced as hunter gatherers. IoT will trigger the overall shift from the resource accumulative, to the interaction driven and resource sharing-enjoying model due to the ubiquitous connectivity and the right kind of applications we can use to bring this experience to maturity.

We expect the Internet of Things to be where the interaction moves away from screens and becomes more like everyday life, only more convenient, comfortable, and easy to manage. We’re still looking for the valet, the system that simply helps us manage things to enable us to become more as people.

Tom Vu (TV):  Do you have any insights into how industries like Semi-Conductor can help share the responsibility of making Internet of Things for the People and by the People?

Michael Koster (MK):

Yes, of course, everyone has a part in the build up and build out of Internet of Things.  From business to academia, in the home and across the planet, the march to Internet of Things is inevitable.  Again and again, the familiar signs of disruption are being seen.  We see that happening today with the very first initial releases of connected products.  There is a movement in Makers, with substantial global activity. Which is quite harmonious to open source and open hardware.  This will be even wider spread once critical mass takes effect with products more and more becoming connected and smart via Internet.  The power of the sensor proliferation is akin to Twitter having 10 people registered and using their Social Fabric versus 100s of millions.  The more everyday devices and things are connected, the more the power of IoT will overwhelmingly surface.

It’s only how well we integrate and collaborate together across industry to propel this next phase of Internet to the next level.  Every potential disruptive technology has a turning point.  We are at that point and we are all part of this movement. In turn, the Internet of Things will make better products, a better user experience, and optimized efficiency across all resources. How we decide to apply this technology will make all the difference.

This very notion forces industries to be more aware, efficient, and productive. Sensors and connected devices will help supply chain, manufacturing, research, product roadmaps, experience, and ultimately drive an economy of growth. The enterprise begins to have a visibility, transparency to customers, people.   Ultimate, it’s a true nervous system, connected via an enterprise level to a personal consumer level.

SMART, AWARE, and SENSORY are new enhancements to business to include customer habits and patterns of use, threaded right into the production routine and product design. Internet of Things will help sculpt a more consumer oriented and customer centric world of products. Customers will have direct influence in the manufacturing of individual products and instances of products.  Companies can help by being part of the community, albeit in the field of electrical engineering, design, data, to software development on the cloud.  Internet of Things will have touch points between customers and business as much as the electrical power grids have influence across all business today.

The new ecosystem will have micro scale and agile manufacturing at a level of customization unimaginable today. It’s the next driver for brilliant machines, maybe artisan-machines that work for individuals but still live on the factory floor.

You can work with the developers and work toward expanding businesses that can embrace the development world.  Help build the $50 cell phone or connected devices that bridge fiscal and energy compliance for a better world.

Ride the long tail wave… and the inverted business models…  Make more accessibility to all products and be responsible in accessibility… From crowdfunding or crowdsourcing, like Kickstarter or Makers, someone is going to figure out how a sensor can do more, in a very impactful and human experience paradigm. The new innovations will come from everywhere; from the 14 year old in Uganda who takes apart her cellphone to repurpose it into a medical monitoring device, from the basements and garages of millions of makers and DIY’ers worldwide who have sure genius among them.

It is super important to get the very latest hardware out to the open community so that innovation can be leveraged, taken to new levels of creativity and crowdsource ideation for collaboration and massive cross-contribution. Accessibility, documentation, development, ecosystem for software support for the MCUs are all too important.  Atmel holds building blocks to many of these pieces, combined with their development tools and evaluation ecosystem (Atmel Studio 6, Atmel Spaces, Atmel Gallery) and involvement with Makers and Arduino.

Open Hardware / Open Source will come to be de-facto standards.  Bundle open source along with the open hardware to make it even more accessible and embed rapid guide start for newcomers. Right now a key piece is the Wireless Sensor Net. If there were a good open source WSN available and supported by manufacturers, it could enable a groundswell of connected devices.

Build open source and open hardware educational IoT developer’s kits for ages 8 and up, for high school and college, to hit all levels of involvement and expertise. Support community hackspaces and places (ie Noisebridge) where everyone can learn about the digital world and programming.

We are seeing the leveling out of the development happening in all parts of the world. Radical innovation is happening everywhere. Open Source is helping shape this curvature.  This is the broader whole tide that we are seeing. Pinocchio is one great innovation emerging from Makers and Open Source, then we have IoT hubs such as SmartThings, Thingworx, or Xively (formerly Cosm).  There is a lot of crowdfunding, ideation, blooming of disruptive products looking to change the scene of things to come….
Support open source and open collaboration in everything, to create a culture of sharing and innovation, a culture of synergy in building the Internet of Things together. Involve customers as participants and makers of their own experiences. Make sure everyone has access to the information and support they need to build, maintain, hack, and repurpose their devices over time to promote a healthy ecosystem.

This time innovation is going global. The ideation is happening everywhere. There are many global Silicon Valley type hubs, other metros in the world, as well as global accessibility to the same information. We see startup mentality blossoming across all geo-locations.  Again, Semi-Conductors is contributing, helping pave the back-plane for innovation & connectivity for the development layers on top.  Global village of innovation is coming of age… Now.

 

Also read Part 1 and Part 2 of the Interview Series.