Tag Archives: Internet of Everything

Internet of Things will generate 400 zettabytes of data by 2018

The Internet of Things will generate an astonishing 400 zettabytes (ZB) of data per year by 2018, according to a new report from Cisco. To put things into perspective, a zettabyte is a trillion gigabytes.

internetofthingsvisualized

The company’s annual Global Cloud Index study reveals that data from connected devices will reach 403ZB each year by 2018, up from 113.4ZB in 2013. In particular, Cisco cites a number of real-world business examples that will drive this rise in data, including a Beoing 787 aircraft which generates 40TB per hour of flight or an automated manufacturing facility that produces approximately 1 TB per hour (of which 5 GB is transmitted to a data center).

As the report highlights, cloud-based services are essential for most Internet of Everything (IoE) applications, which increases the ability for people, data, and things to communicate with one another over the Internet. Despite this huge growth in data from IoE devices, only a small amount will actually be sent to data centers for storage and subsequent analysis.

Cloud_Index_White_Paper_12

Moreover, the company notes that data created by connected devices worldwide will be 277 times higher than the amount of data being transmitted to data centers from end-user devices, while 47 times higher than total data center traffic by 2018.

Another key component of the Internet of Everything and cloud services adoption will be the growth of IPv6 capability among users, devices, network connectivity, and content enablement. Globally, 24% of Internet users will be IPv6-capable by 2018, while nearly half of all fixed and mobile devices will be IPv6-enabled.

Cloud_Index_White_Paper_13

According to Google, the percentage of IPv6 global users on in late September 2014 was 4.54%, up from 1.82% the same time last year — an increase of nearly 150% in the last year alone.

Explore the latest predictions by reading the Global Cloud Index in its entirety here.

Building real-time monitoring for IoT device state

You may have a couple Arduinos, or billions of IoT devices connected in a single instance. A common need today is the requirement to detect when devices are turned on and turned off, also known as device state. And, monitoring the device state of connected devices and machines in real-time is called presence.

In this blog post, we’ll walk you through how to use presence to monitor IoT devices and hardware connected with PubNub (for both Java and JavaScript).

PresenceIotDevices

Why You Need to Monitor Your IoT Devices in Real-Time

IoT hardware comes in all shapes, sizes, and prices. But despite their differences, monitoring device state is essential, and we need to know exactly when they’re online and offline. Say you have an (Atmel based) Arduino hooked up to your apartment doorbell for whatever reason. Your Arduino goes offline, the pizza man is standing outside, and you’re not eating. Or maybe the situation is more dramatic. You may have hundreds of IoT devices hooked up to manage your farm. Keeping tabs on those devices is vital for the health of your farm, and you need to know when they go offline.

Device Monitoring Using Presence

We’ll first walk you through using Presence for IoT devices with Java, then move onto JavaScript. With both, you’ll first need to sign up for a PubNub account. Once you sign up, you can get your unique PubNub keys in the PubNub Developer Portal. In the developer’s portal, click to enable Presence. Feel free to play around as much as you want in our free Sandbox tier.

Check out our simulated Presence demo to get a better idea of how Presence can be used for real-time monitoring of Internet of Things devices.

Java

Step 1: Presence and here_Now() are two features of PubNub that update device or user state in real-time. Whether you choose to use JavaScript or the PubNub Java Presence SDK, the output for Presence is the same. You will get an output in this format:

{"message":"OK","status":200,"uuids":["uuid1"],"service":"Presence",
"occupancy":1}

where “uuids” contains a list of the uuids online and occupancy gives the number of online users.

I will be using the code feature to see ‘who’s there?’. All you need to provide is the channel name, and then check if there is anyone on that channel. The code sample below is basic usage.

pubnub.hereNow("my_channel", new Callback() {
     public void successCallback(String channel, Object response) {
         System.out.println(response);
     }
     public void errorCallback(String channel, PubnubError error) {
         System.out.println(error);
     }
 });

This will output the devices that are online which is identified by the UUIDs. In order to consume this information, all you need is to modify the callback function a little. The following code shows you how:

Step 2:

Callback callback = new Callback() {
	public void successCallback(String channel, Object response) {
	    String temp = response.toString();
	    int start = temp.indexOf('[');
	    int end = temp.indexOf(']');
	    for(int index = start+1;index<end;index++){
		    if(temp.charAt(index)!=','){	
		    	uuid1 = uuid1 + temp.charAt(index);
		    }
		    else{
		    	System.out.println();
		    }
	    }
    	String replaced = uuid1.replace("\""," ");
    	String[] uuidlist = replaced.split("\\s+");
    	for (String tempstring : uuidlist){
    		System.out.println(tempstring);
    	}	
	}
		
	public void errorCallback(String channel, PubnubError error){
		System.out.println(error.toString());
	}
};
	
	public void herenow(){
		Pubnub pubnub = new Pubnub("demo", "demo");
		pubnub.hereNow("my_channel", callback);
	}

This code, modifies the information received by the hereNow function, and stores and prints it in an array called ‘uuidlist’. In this manner, you can now use this information according to your requirements.

JavaScript

Step 1: The PubNub JavaScript Presence feature is an optional parameter used along with the subscribe call in JavaScript. The code sample below is basic usage:

pubnub.subscribe({
     channel: "my_channel",
     presence: function(m){console.log(m)},
     callback: function(m){console.log(m)}
 });

The presence feature will output the devices that are online as identified by their UUIDs, along with their timestamp, an action that indicates join/leave/timeout and the occupancy of the channel. This information will be displayed in the console.

But what if you want to consume this information by publishing it to a screen or store it somewhere? The following code lets you do just that.

Step 2: Now we’ll bring the presence to life with JavaScript

var deviceList[],
devices =[];

pubnub.subscribe({

    channel: 'my_channel',
    presence: function(message,channel){
        if(message.action == "join"){
        	devices.push(message.uuid);
    		deviceList.append("<li text-align:
    		center>" + message.uuid + "</li>");
      		}
        else{
          devices.splice(devices.indexOf(message.uuid), 1);
          deviceList.find(message.uuid).remove();
	}
 }
});

Here, we define a custom function for presence which basically uses the different actions of a presence event that could occur, such as join, timeout and leave.

  • If a ‘join’ occurs, we append the UUID to the list of devices that are online.
  • If a ‘leave or a timeout’ occurs, we remove that UUID from the list of list of devices that are online.

You now have the online users, both in an array called ‘devices’ and also as list printed on a page.

This way, you can now be updated on the different devices joining and leaving your network in real-time.

You can check out the PubNub JavaScript Presence documentation here.

Additional PubNub Presence Resources

IoT analogous to undifferentiated silicon stem cells

One could say that any term with the word “thing” in it is vague — by definition. So, one could also assume that the term “Internet of Things” (IoT) is also vague by definition. Why is it that the tech and investor communities cannot define IoT? Maybe it’s because the IoT is indefinable — by definition.

cloud

In order to try and define something, it helps to analyze is compsition. There appears to be an emerging consensus among engineers, industry analysts, authors, tech executives, and others about the fundamental pieces that will make up the IoT; namely, the following items:

  • Intelligence
  • Communication
  • Sensing
  • Security

puzzle

Ultra-low power drain and miniaturization are other aspects. So, perhaps a definition of the IoT today could be the following: “Low power, ultra-small things inside other things that sense more things and communicate (securely) between these things and other things.”

Obviously, that’s not a meaningful definition, and rightfully so, because the problem of defining the IoT is that today the IoT is not any ‘thing.’ Certainly not anything specific. The IoT is a generality — by definition. The only true specifics are the component pieces as noted above, and once those components are assembled and programmed, they differentiate into real things.  

The point here is that the IoT is analogous to undifferentiated silicon stem cells, and these silicon stem cells can differentiate into a spectrum of specific, tangible, and identifiable…

Si stem cells

The differentiated devices would address a wide spectrum of specific, diverse solutions for use in an even wider range of equipment and applications. Most of the eventual applications and solutions have not even been dreamed up yet. This is a similar situation to world of cellphones back in 2006 before anyone outside a certain city in Silicon Valley knew that a new device would eventually turn everyone’s phone into a smart black rectangle for years. IoT potentially will have similar power to transform the world on a large scale as well — far beyond mobile communications. We just don’t know exactly how the silicon stem cells will differentiate yet… but we will.

Each of the main IoT functions — communications, control, sensing, and security — will surely undergo micro and macro integration. Micro integration is putting the component subsystem pieces together into low power, small, integrated physical platforms. Companies with microcontroller, sensor, communication, and security IP will be best positioned. (Do any come to mind?)

Macro integration refers to creation of ecosystems. It is easy to visualize what those will be, like a medical ecosystem with biometric sensors of various types connected to one’s body and the cloud through smartphones. Another could be an automotive ecosystem that senses the location, speed, and direction of your car and other cars near you and reports that data to each other (V2V communications). One more automotive ecosystem could sense and control the systems inside a car, such as entertainment, information, and mechanical. Yet another would be mobile ecosystems that include wearable products that sense biometrics, interface with automotive and home entertainment systems, control home automation, perform electronic transactions, and a plethora of other functions. It is easy to envision a world where mobile handsets, tablets, glasses, watches, and other things that people wear or carry automatically interact with sensors and screens sprinkled throughout the environment. Some refer to the sensors spread all around as “sensor dust.” Now you can see why.

The irony is that by the time that the component pieces of the silicon stem cells differentiate into specific things, they cease being just things. And that means that the IoT starts to fade away, product by product.

To put this in a Dr. Seuss sort of way, “When a thing starts becoming something, it starts stopping being a thing.”

Thing two

To be a leader in the post-IoT universe where things are not just things anymore, silicon providers must put all pieces in place and stimulate differentiation before the other guys do. It’s all about vision… but that is a topic for another day.

BI Intelligence details IoT enterprise apps

Writing for Business Insider, Emily Adler notes that the Internet of Things (IoT) — a world comprised of ordinary objects connected to the web and accessible from mobile devices — will soon emerge as a huge market, “dwarfing all other consumer electronics categories.”

Just how large are we talking? BI Intelligence reveals that 1.9 billion once-inert everyday and enterprise devices are already connected to the Internet — from parking meters to home thermostats — while that number is expected to rise to 9 billion come 2018. “That’s roughly equal to the number of smartphones, smart TVs, tablets, wearable computers, and PCs combined,” Adler emphasized.  

iot_newgrowth

“There are already clear signs that the biggest tech companies — and even smaller players — are trying to get out front of the race to dominate the IoT. Google has acquired Nest. Apple has unveiled its HomeKit platform. Even Staples and Honeywell — not typically companies thought of as tech leaders — are putting out new IoT-related products.”

It doesn’t stop there either, thanks in part to the budding Maker Movement. According to Gartner’s Jim Tully, by 2018, 50% of the Internet of Things solutions will be provided by startups which are less than 3 years old — this a clear result of DIY culture continuing to spur innovation throughout both the B2B and consumer space.

As we’ve previously discussed on Bits & Pieces, BI Intelligence recently listed the 6 primary attributes that’ll help make “things” a part of the rapidly evolving IoT set to connect over 30 billion devices over the next six years.

As uptake among consumers and businesses ticks up, BI Intelligence has unveiled in one of its latest reports that the IoT market “will drive trillions in economic value as it permeates consumer and business life. Soon, it will be perfectly normal to have a refrigerator that talks to you and a garage door you open with your smartphone.”

According to Reza Kazerounian, Senior VP and GM of the Microcontroller Business Unit at Atmel, the IoT is a combination of multiple market segments, tens of thousands of OEMs and hundreds of thousands of products. “It is seen by many as the next wave of dramatic market growth for semiconductors. If you look at the different estimates made by market analysts, the IoT market will be worth trillions of dollars to a variety of industries from the consumer to financial, industrial, white goods and other market segments,” he told EEWeb in February.

Adler notes just some of the most important enterprise applications that are already being developed today:

  • Connected advertising and marketing: Cisco believes that this category (think Internet-connected billboards) will be one of the top three IoT categories, along with smart factories and telecommuting support systems.
  • Intelligent traffic management systems: Machina Research, in a paper prepared for the GSMA, sees $100 billion in revenue by 2020 for applications such as toll-taking and congestion penalties. A related revenue source will be smart parking-space management, expected to drive $30 billion in revenue.
  • Waste management systems: In Cincinnati, residential waste volume fell 17% and recycling volume grew by 49% through use of a “pay as you throw” program that used IoT technology to monitor those who exceed waste limits.
  • Smart electricity grids that adjust rates for peak energy usage:These will represent savings of $200 billion to $500 billion per year by 2025, according to the McKinsey Global Institute.
  • Smart water systems and meters: The cities of Doha, São Paulo, and Beijing have reduced leaks by 40 to 50% by putting sensors on pumps and other water infrastructure.
  • Industrial uses: This includes Internet-managed assembly lines, connected factories, and warehouses, etc.

Earlier this month, Atmel teamed up with fellow industry leaders Broadcom, Dell, Intel, Samsung and Wind River to drive seamless device-to-device connectivity. The Open Interconnect Consortium (OIC) aims to define IoT requirements to ensure the interoperability of these billions upon billions of devices projected to come online by 2020.

“Atmel is excited about our participation in OIC to establish an open source framework that goes beyond the digital home and supports services for multiple verticals including consumer, industrial and automotive markets,” explained Kaivan Karimi, Vice President and General Manager of Wireless MCUs at Atmel.

In order to help deliver the platform for a growing demand of intelligent, connected devices, Atmel recently announced the launch of Atmel® | SMART™, the new brand of ARM®-based microcontrollers and has expanded its SMART portfolio with new SmartConnect SAM W23 modules, enabling Wi-Fi connectivity and the best of high performance and low power technology for IoT applications.

atmel_SMART_HomePage_980x352

Interested in learning more about the IoT? You can access the entire BI Intelligence report here or read through our extensive Bits & Pieces IoT article archive.

Unlocking value from the Internet of Things (IoT)

Analysts at Gartner have identified four fundamental usage models to help unlock value from the Internet of Things (IoT).

“As the Internet of Things grows rapidly, it is linking millions of assets, including devices, people and places, to deliver and share information, enhancing business value and competitive advantage, and creating new business opportunities,” explained Hung LeHong, VP and Gartner Fellow.

“In this early and emergent phase of development, entrepreneurs are experimenting across such a diverse range of sectors, applications, business models and technologies in their efforts to uncover value. This creates confusion and makes it difficult for others to easily identify the potential in their own geographies, industries and business sectors.”

Although the Internet of Things offers wide applicability across multiple spaces, some enterprises may be too quick to dismiss the value of the IoT in their companies because the examples of what others are doing don’t precisely match their own environments.

“A recycling company or vending machine operator, for example, may not find any applicability for the Internet of Things when reviewing how a hospital is connecting its patient-monitoring equipment to the Internet of Things. However, on closer inspection, these companies will discover that the reason the hospital has connected its equipment is to cut costs on nurses’ rounds to monitor patients,” said LeHong.

“Any company operating remote devices has opportunities to use this same model. Remote assets that require manual rounds for the purposes of emptying or replenishment, such as recycling bins or vending machines, can benefit from the same approach the hospital took. The underlying commonality is the business case to reduce the costs from doing the rounds by connecting assets to monitor status.”

Despite their diversity, Gartner analysts believe all current examples can be categorized into four basic usage scenarios: manage (e.g. multiple sensors reporting real-time streams of data), monetize (“pay as you drive” vehicle insurance), operate (regulating complex water supplies or irrigation systems) and extend (provision of advisory information such as imminent vehicular part failure).

“Although much of the spotlight today is on the Internet of Things, the true power and benefit of the Internet comes from combining things with people, places and information systems,” LeHong added. “This expanded and comprehensive view of the internet is what Gartner calls the Internet of Everything.”

Interested in learning more? You can access Gartner’s detailed IoT usage breakdown here. Readers may also want to check out two recent Bits & Pieces Atmel IoT articles: “Sullivan Says the IoT is Becoming a Reality” and “Making the Internet of Things a Reality.”

An introduction to Kevin Ashton’s recent IoT keynote

Recently, a number of industry heavyweights have taken a keen interest in the Internet of Things (IoT). Essentially, the IoT involves various nodes collectively generating a tremendous amount of data.  We know there is a strong emphasis now for the “Things being connected”.  In a small scale, a Formula 1 constructor such as McLaren uses a cluster of sensor nodes to transmit vital telemetry from the pit crew to garage, then to race engineers and ultimately back to R & D centers. During the races, this all happens in realtime. Of course, the customer in this scenario is the driver and engineering team – converging machine logs and other relevant data to ensure a vehicle runs at optimal speed.  During the races, this happens realtime; converging decisive machine log and digital data together to formulate decisive actions toward minor setting adjustments; this results in balancing the force of physics to the engine and car to produce fractions of a competitiveness in seconds.  This equates to a win in the race and competitiveness on the circuit.  Comparatively as a smaller micro-verse, this is the world of Industrial Internet and Internet of Things.

Now let’s imagine this same scenario, albeit on a global scale. Data gathered at crucial “pressure points” can be used to optimize various processes for a wide variety of applications, scaling all the way from consumer devices to manufacturing lines. To be sure, an engine or critical component like a high efficiency diesel Spark Plug is capable of transmitting information in real-time to dealerships and manufacturers, generating added value and increasing consumer confidence in a brand.

Sounds like such a scenario is years away? Not really, as this is already happening with GE and other larger Fortune 500s. Then again, there are still many frontiers to continually innovate. Similar to aviation, its more about building smarter planes, rather than aspiring to a revolution in design. Meaning, building planes capable of transmitting data and implementing actions in real-time due to evolved processes, automation and micro-computing.

Likewise, applications combined with embedded designs also yield improved output. Given the multitude of various mixed and digital signals, efficiency and computing quality factors also play vital roles in the larger system. The GE jet engine featured in one particular plane has the ability to understand 5,000 data samples per second. From larger systems down to the micro embedded board level, it’s all a beautiful play of symphony, akin to the precision of an opera. To carry the analogy further, the main cast are the architects and product extraordinaires who combine intelligent machine data, application logic, cloud and smartly embedded designs to achieve the effect of an autonomous nervous system.

Remember, there are dependencies across the stack and layers of technology even down to the byte level. This helps planes arrive at their destination with less fuel – and keeps them soaring through the sky, taking you wherever you want to go. Ultimately, a system like this can save millions, especially when you take into account the entire fleet of aircraft. It is truly about leveraging intelligent business – requiring connectivity states concerted in a fabric of communication across embedded systems. Clearly, the marriage of machine data and operational use-cases are drawing closer to realization.

“When you’ve got that much data, it had better be good. And reducing the CPU cycles cuts energy use, especially important in applications that use energy harvesting or are battery powered. And that is why Atmel offers a wide range of products mapping to more than the usual embedded design ‘digital palette’ of IoT building blocks. The market needs illustrations and further collaboration; diagrams that show what plays where in the IoT and who covers what layers,” says Brian Hammill, Sr. Atmel Staff Field Applications Engineer.

“Something like the OSI model showing that we the chip vendors live and cover the low level physical layer and some cover additional layers of the end nodes with software stacks. Then, at some point, there is the cloud layer above the application layer in the embedded devices where data gets picked up and made available for backend processing. And above that, you have pieces that analyze, correlate, store, and visualize data and groups of data. Showing exactly where various players (Atmel, ARM mbed (Sensinode), Open Platform for IoT, Ayla Networks, Thingsquare, Zigbee, and other entities and technology) exist and what parts of the overall IoT they cover and make up.”

Atmel offers a product line that encompasses various products that give rise to high end analog to digital converter features.  For example in Atmel’s SAM D20 an ARM based Cortex-M0+, the hardware averaging feature facilitates oversampling.  Oversampling produces sample rates at high resolution.  The demand for high resolution sampling runs congruent to many real-world sensor requirements.  In the world of engineers and the origin of the embedded designs, achieving lean cost by ensuring no extra software overhead – competitive with benefits.  In the design and mass fulfillment of millions of components and bill of materials used to create a multi-collage of global embedded systems, there exist strong ledger point of view – even for engineers, designers, architects, and manufacturing managers.  Ultimately, augment business line directives to fullest ROI.  Expanding the design/experience envelope, Atmel microcontrollers have optimized power consumption.  Brian Hammill concurs, “Atmel offers several MCU families with performance under 150 microamperes/MHz (SAM4L has under 90 uA/MHz, very low sleep current, and flexible power modes that allow operation with good optimization between power consumption, wakeup sources, wakeup time, and maintaining processor resource and memory.”

Geographically, there seems to be a very strong healthcare pull for IoT in Norway, Netherlands, Germany, Sweden and this follows into Finland and other parts of Asia as well as described in Rob van Kragenburg’s travels of IoT in Shanghai and Wuxi. Therein lies regional differences mixed with governance and political support. It is also very apparent that Europe and Asia place an important emphasis on IoT initiatives.

Elsewhere, this is going to happen from bottom-up (groups akin to Apache, Eclipse for the early web, open source, and IDE, and now IoT-A, IoT Forum) in conjunction with top-down (Fortune 500’s) across the span of industry. But first, collaboration must occur to work out the details of architecture, data science and scalability. This is contingent on both legacy systems and modern applications synchronizing and standardizing in the frameworks conceived by open and organizing bodies (meant to unify and standardize) such as IoT-A and IoT-I. Indeed, events like IoT-Week in Helsinki bring together thought leaders, technologist and organizations – all working to unify and promote IoT architecture, IP and cognitive technologies, as well as semantic interoperability.

In the spirit of what is being achieved by various bodies collaborating in Helsinki, Brian Hammill asserts: “The goal of a semiconductor company used to be to provide silicon. Today it is more as we need development tools as well as software stacks. The future means we need also to provide the middleware or some for of interoperability of protocols so that what goes in between the embedded devices and the customers’ applications. I think an IoT Toolkit achieves that in its design.  Atmel also offers 802.15.4 radios, especially the differentiation of the Sub-GHz AT86RF212B versus other solutions that have shorter range and require and consume more power.

We also must provide end application tools for demonstration and testing, which can then serve as starter applications for customers to build upon.”

There will be large enterprise software managing data in the IoT. Vendors such as SAS are providing applications at the top end to manage and present  data in useful ways, especially when it comes to national healthcare. Then there are companies which already know how to deal with big data like Google and major metering corporations such as Elster, Itron, Landis+Gyr and Trilliant. Back in the day, meter data management (MDM) was the closest thing to big data because nobody had thought about or cared to network so many devices.

We tend to think of IoT as a stereotype of sorts – forcing an internet-based interaction onto objects. However, it is really trying to configure the web to add functionality for “things,” all while fundamentally protecting privacy and security for a wide range of objects and devices, helping us shift to the new Internet era. Currently, there a number of organizations and standards bodies working to build out official standards (IETF) that can be ratified and put into engineering compliance motion. Really, it’s all starting to come together, as illustrated by the recent IoT Week in Helsinki which is also working to bring Internet of Things together. Here is IoT’s very own original champion, a leader whom has been working toward promoting the Internet of Things (IoT) for 15 years: Kevin Ashton’s opening talk for the Internet of Things Week in Helsinki (video).

iot-week-partners

Remarks at the opening of Third Internet of Things Week, Helsinki, June 17, 2013:

Thank you, and thank you for asking me to speak at the Third Internet of Things Week. I am sorry I can’t be with you in Helsinki. This is a vibrant and growing community of stakeholders. I am proud to have been a part of it for about 15 years now.

One of the most important things that is going to happen this week is the work on IOT-A.  It is really important to have a reference model architecture for the Internet of Things. And one of the reasons is that for most of those 15 years, we’ve been talking about the Internet of Things as something in the future, and, thanks to amazing work by this community — I would particularly like to recognize  Rob van Kranenburg and Gérald Santucci and the work of the European Union, which has been amazing for many, many years now — the Internet of Things is not the future anymore. The Internet of Things is the present. It is here, now.

I was with an RFID company a month ago who told me that they had sold 2 billion RFID tags last year and were expecting to sell 3 billion RFID tags this year.
rfid-tags

So, just in 2 years, this one company has sold almost as many RFID tags as there are people on the planet. And, of course, RFID is just one tiny part of the Internet of Things, which includes many sensors, many actuators, 3-D printing, and some amazing work in mobile computing and mobile sensing platforms from modern automobiles, which are really now sensors on wheels, and will become more so as, as we move into an age of driverless cars, to the amazing mobile devices we all have in our pockets, that I know some of you are looking at right now. Then there are sensor platforms in the air. There is some really amazing work being done in the civilian sector with drones, or “unmanned aerial vehicles.: that are not weapons of war or tools of government surveillance but are sensor platforms for other things.

And all this amazing technology, which is being brought to life right now, is connected together by the Internet, and we can only imagine what is coming next. But one thing I know for sure is, now that the Internet of Things is the present and not the future, we have a whole new set of problems to solve. And they’re big problems. And they’re to do with architecture, and scalability, and data science. How do we make sure that all the information flowing from these sensors to these control systems is synchronized and harmonized, and can be synthesized in a way that brings meaning to data. It is great that the Internet of Things is here. But we have to recognize we have a lot more work to do.

It is not just important to do the work. It is important to understand why the work is important. The Internet of Things is a world changing technology like no other. We need it now more than ever. There are immeasurable economic benefits and the world needs economic benefits right now. But there is another piece that we mustn’t lose sight of. We depend on things. We can’t eat data. We can’t put data in our cars to make them go. Data will not keep us warm.

And there are more people needing more things than ever before. So unless we bring the power of our information technology — which, today, is mainly based around entertainment, and personal communication, and photographs, and emails — unless we bring the power of our information technology to the world of things, we won’t have enough things to go around.

The human race is going to continue to grow. The quality of our lives is going to continue to grow. The length of our lives is going to continue to grow. And so the task for this new generation of technology and this new generation of technologists is to bring tools to bear on the problems of scaling the human race. It is really that simple. Every generation has a challenge, and this is ours. If we do not succeed, people are going to be hungry, people are going to be sick, people are going to be cold, people are going to be thirsty, and the problems that we suffer from will be more than economic.

I have no doubt that we have to build this network and no doubt [it] is going to help us solve the problems of future generations by doing a much more effective job of how we manage the stuff that we depend on for survival. So, I hope everyone has a great week. It is really important work. I am delighted to be a small part of it. I am delighted that you all are in Helsinki right now. May you meet new people, make new friends, build great new technology. Have a great week.

 

1:1 interview with Michael Koster

Series 3 – Why IoT Matters?


By Tom Vu, Digital Manifesto and Michael Koster, Internet of Things Council Member


Three-part Interview Series (Part 3)


Tom Vu (TV):  Describe how Internet of Things matters? Why should anyone care? Should futurist, technologist, data hounds, product extraordinaires, executives, and  common consumer need to understand what’s to come?

Michael Koster (MK):

There are two main effects we see in the Internet of Things. First, things are connected to a service that manages them. We can now monitor things, predict when they break, know when they are being used or not, and in general begin to exploit things as managed resources.

The second, bigger effect comes from the Metcalfe effect, or simply the network effect, of connecting things together. Bob Metcalfe once stated that the value of a communications network is proportional to the square of the number of connected compatible communicating devices. Since then it’s used to refer to users, but maybe Bob was thinking way ahead. Notice the word compatible. In this context, it means to be able to meaningfully exchange data.

When we connect physical objects to the network, and connect them together in such a way as to manage them as a larger system, we can exploit the Metcalfe effect applied to the resources. We are converting capital assets into managed resources and then applying network management.

Because Internet of Things will be built as a physical graph, it’s socialization of everything, from simple everyday devices to industrial devices. Metcalfe states that 10X connections is 100 times the value.  Cisco is projecting that the Internet of Everything has the potential to grow global corporate profits by 21 percent in aggregate by 2022. I believe these represent a case for pure information on one end, and an average efficiency gain over all of industry on the other.

This has the potential to change things from a scarcity model, where the value is in restricting access to resources, thus driving up price, to a distribution centered model, where value is in the greater use of the resource.  Connecting things to the network is going to reverse the model, from a model of “excluding access” to “inclusion access”, a model where you push toward better experience for consumer/customer/co-business.

Crowdsourcing of things is an example, where models are inverted.  The power arrow is going in the opposite direction, a direction equalizing toward the benefit of the massive body consumers and people.  This in turn, helps shift the business model from a customer relationship managed by vendors, also called advertising, to vendor relationship managed by customers. This is called Vendor Relationship Management, or VRM, pioneered by Doc Searls. This reverses the power arrow to point from customer needs toward business capability to meet needs, and needs are met now that the vendor is listening.  A lot of this is not just IoT but also open source nature, and the big changes happening in people, where sharing being held more valuable than the exclusion of access.

Inverting the value model, breaking down artificially bloated value chains, creating a more efficient economy, I believe it important to create a layer of connectivity that will act as the necessary catalyst to the next Internet of Everything, Internet of Things, Industrial Internet.  Break down the scarcity-based models, exclusion of access, turn it around. Instead of excluding access and driving prices up for limited resources, we will yield higher more efficient utilization of resources.

michael-koster-2-Maker-Faire-2013-SanMateo-Atmel-Maker-Movement

Michael Koster describing Internet of Things and the Maker Movement and Open Source Importance of this Development with Booth attendees at Maker Faire 2013 in San Mateo

It matters on a Global Scale, by giving us better resource utilization. SMART Grid alone has resulted in up to 19.5% efficiency improvement, with an average of 3.8% improvement over all deployments already. We do not have enough energy storage or transmission capacity to deal with the major shift to solar energy sources now in progress worldwide. We are going to have to adapt, learn, monitor, manage, and control our usage in ways only possible with large scale sensing and control.

For the spirit of IoT, it’s not only in making peoples/consumers lives more convenient, solving their first world problems, but its more in the ability to manage resources together as a larger system, from the individual out to a global scale. Especially, this holds true with the effects of globalization, balancing, localization, connectivity, and ubiquity.  It’s for the people.  Social Media had it’s transformation across many things, Internet of Things will also have an efficiency and business transformation.

Companies like Atmel play an important role in creating the building blocks for embedded control and connectivity by means of progressing the ARM / AVR / Wireless / Touch portfolio of products, all of which are the necessary thinking and connecting glue of the Internet of Things. Internet of Things has a large appetite for ultra low power connectivity using wireless standards.  Wireless Sensor Networks are key technology for the IoT, so much that WSN was probably the number one issue in the early deployment. There are many competing standards: Zigbee, SA100.11, Bluetooth, Body Area Network, Wi-Fi Direct, NFC, Z-Wave, EnOcean, KNX, XRF, WiFi, RFID, RFM12B, IEEE 802.15.4 (supporting WPAN such as ZigBee, ISA100.11a, WirelessHART, IrDA, Wireless USB, Bluetooth, Z-wave, Body Area Network, and MiWi).

michael-koster-Maker-Faire-2013-SanMateo-Atmel-Maker-Movement

Michael Koster Exhibiting with Atmel Booth at Maker Faire 2013 San Mateo

Tom Vu (TV):  What would be the most important design decision that supersedes the eventual success of an open source Internet of Things compliance?

Michael Koster (MK):

The first most important decisions are to do open source design based on needs and use cases. I don’t think we can build an IoT if its not open source, or if it’s not connected to the real world use cases.

Just like the Internet, built on open source and open standards, the starting data models are important for building on and building out. HTML and http and URLs allowed many platforms to be built for the web and supersede each other over time, for example Server Pages, SOAP, Javascript, and AJAX. A browser can understand all of the current platforms because they are all based on common abstractions. We believe that the Semantic Web provides a solid basis of standard web technology on which to base the data models.

Tom Vu (TV):  Describe the importance of Internet of Things silos and other M2M standards currently at large in the development community? What are the differences?

Michael Koster (MK):

The IoT has started off fueled by crowdfunding, VC money and other sources that have to some extent built on a business model based on vertical integration. Vertical integration has a big advantage; you need to have a self-contained development to get things done quickly for proof of concept and demonstration.

Vertical integration is also a big driver of the current machine-to-machine, or M2M, communication market. This is the paradigm supporting the initial deployment of connecting things to services for management on an individual thing basis.

The downside of vertical integration is that it leads to silos, where the code developed for a system, the data collected, and even the user interfaces are all unique to the system and not reusable in other systems. Moreover, the vertical integration is often seen as a proprietary advantage and protected through patents and copyrights that are relatively weak because they apply to commonly known patterns and methods.

It’s not always this way, though. As an example, the Eclipse foundation is open source, allowing their M2M system to be used for vertical application development as well as integrated with IoT Toolkit data models and APIs to enable interoperability with other platforms.

The European Telecommunications Standardization Institute, or ETSI, also has an M2M gateway that is a combination of open source and paid license code. New features are enabled through Global Enablers or GEs that implement a particular function using an OSGi bundle consisting of Java code. The Smart Object API can be built into ETSI through a GE bundle, which will enable an ETSI M2M instance to inter-operate with other IoT Toolkit instances. This is the power of the approach we’re taking for interoperability, which is obtained by adding a Smart Object API layer to the system.

Tom Vu (TV):  Explain horizontal and service interoperability for Internet of Things, why is it so important?

Michael Koster (MK):

Connected things connect through WSN gateways and routers to Internet services that fulfill the application logic for the user. Today, for the most part, each vendor provides a cloud service for the devices they sell, e.g. Twine, Smart Things, or the Nest thermostat. There are also some cloud services that allow any connection, providing an API for anyone to connect, for the purpose of integrating multiple devices. But the dedicated devices mentioned earlier don’t work with the generic cloud services.

Many IoT services today are based on providing easy access to the devices and gateway, with open source client code and reference hardware designs, selling hardware on thin margins, and Kickstarter campaigns. There is typically a proprietary cloud service with a proprietary or ad-hoc API from the device or gateway to the service, and a structured API to the service offering “cooked” data.

These systems contain a highly visible open source component, but much of the functionality comes from the cloud service. If a user wishes to use the open source part of the system with another service, the APIs will need to be adapted on either the device/gateway end or service end, or both. It’s not exactly a lock-in, but there is a fairly steep barrier to user choice.

IoT in Silos

Internet of Things (IoT) in Silos

There is the beginning of an ecosystem here, where some devices are being built to use existing services, e.g. Good Night Lamp uses Cosm as their cloud service. Other services that allow open API connectivity include Thingworx and Digi Device Cloud. These services all use very similar RESTful APIs to JSON and XML objects, but have different underlying data models. As a result, sensors and gateways must be programmed for each service they need to interact with.

The current system also leaves users vulnerable to outages of a single provider. Even if there was a programmable cloud service that all could connect to that ran user applications, there would be a vulnerability to provider outages. Much better and more robust would be an ability to configure more than one service provider in parallel in an application graph, for a measure of robustness in the face of service outages. Even more, it should be possible to run user application code in IoT gateways, local user-owned servers, or user-managed personal cloud services. Today’s infrastructure and business models are at odds with this level of robustness for users.

In terms of business and business models, a lot of the connection and network infrastructure today was built on a “value chain” model. These are businesses that are built on a model of vertical integration. In these models, value is added by integrating services together to serve one function, hence vertical.  With the Internet of Things, traditional value chains are collapsing down and flattening. There is a bit of a disruption in the business model (services, etc), but also new opportunities emerge to create new Internet of Things services, which is good for business and consumers.

Companies will continue to build out vertical models to specialize in their services. IoT can potentially augment service models with the customer even further and offer creative possibilities of cost savings and experience and deploy more customer centric business fabrics, which will result in better service for consumers.

If companies build their vertically based infrastructure of applications integrating into the IoT Toolkit platform, the basic enablement for horizontal connections will already exist, making it easy to create horizontal, integrative applications based on automatic resource discovery and linkage.

Access to the knowledge can enhance the customer experience and ROI for businesses.  We are at the brink of the new era, where companies and products can arise from the information economy; only now motivation via implicit or explicit engagement is tied to things, assets, information, sensors, education, and augmentation; and everything is more intertwined and involved.

Tom Vu (TV):  Please assume the role of a futurist or even contemporary pragmatist. How does the landscape of Internet of Things fit into that picture for an individual?

Michael Koster (MK):

It goes back to the idea that your life is going to change in ways that we are no longer be driven by the scarcity pressures we experienced as hunter gatherers. IoT will trigger the overall shift from the resource accumulative, to the interaction driven and resource sharing-enjoying model due to the ubiquitous connectivity and the right kind of applications we can use to bring this experience to maturity.

We expect the Internet of Things to be where the interaction moves away from screens and becomes more like everyday life, only more convenient, comfortable, and easy to manage. We’re still looking for the valet, the system that simply helps us manage things to enable us to become more as people.

Tom Vu (TV):  Do you have any insights into how industries like Semi-Conductor can help share the responsibility of making Internet of Things for the People and by the People?

Michael Koster (MK):

Yes, of course, everyone has a part in the build up and build out of Internet of Things.  From business to academia, in the home and across the planet, the march to Internet of Things is inevitable.  Again and again, the familiar signs of disruption are being seen.  We see that happening today with the very first initial releases of connected products.  There is a movement in Makers, with substantial global activity. Which is quite harmonious to open source and open hardware.  This will be even wider spread once critical mass takes effect with products more and more becoming connected and smart via Internet.  The power of the sensor proliferation is akin to Twitter having 10 people registered and using their Social Fabric versus 100s of millions.  The more everyday devices and things are connected, the more the power of IoT will overwhelmingly surface.

It’s only how well we integrate and collaborate together across industry to propel this next phase of Internet to the next level.  Every potential disruptive technology has a turning point.  We are at that point and we are all part of this movement. In turn, the Internet of Things will make better products, a better user experience, and optimized efficiency across all resources. How we decide to apply this technology will make all the difference.

This very notion forces industries to be more aware, efficient, and productive. Sensors and connected devices will help supply chain, manufacturing, research, product roadmaps, experience, and ultimately drive an economy of growth. The enterprise begins to have a visibility, transparency to customers, people.   Ultimate, it’s a true nervous system, connected via an enterprise level to a personal consumer level.

SMART, AWARE, and SENSORY are new enhancements to business to include customer habits and patterns of use, threaded right into the production routine and product design. Internet of Things will help sculpt a more consumer oriented and customer centric world of products. Customers will have direct influence in the manufacturing of individual products and instances of products.  Companies can help by being part of the community, albeit in the field of electrical engineering, design, data, to software development on the cloud.  Internet of Things will have touch points between customers and business as much as the electrical power grids have influence across all business today.

The new ecosystem will have micro scale and agile manufacturing at a level of customization unimaginable today. It’s the next driver for brilliant machines, maybe artisan-machines that work for individuals but still live on the factory floor.

You can work with the developers and work toward expanding businesses that can embrace the development world.  Help build the $50 cell phone or connected devices that bridge fiscal and energy compliance for a better world.

Ride the long tail wave… and the inverted business models…  Make more accessibility to all products and be responsible in accessibility… From crowdfunding or crowdsourcing, like Kickstarter or Makers, someone is going to figure out how a sensor can do more, in a very impactful and human experience paradigm. The new innovations will come from everywhere; from the 14 year old in Uganda who takes apart her cellphone to repurpose it into a medical monitoring device, from the basements and garages of millions of makers and DIY’ers worldwide who have sure genius among them.

It is super important to get the very latest hardware out to the open community so that innovation can be leveraged, taken to new levels of creativity and crowdsource ideation for collaboration and massive cross-contribution. Accessibility, documentation, development, ecosystem for software support for the MCUs are all too important.  Atmel holds building blocks to many of these pieces, combined with their development tools and evaluation ecosystem (Atmel Studio 6, Atmel Spaces, Atmel Gallery) and involvement with Makers and Arduino.

Open Hardware / Open Source will come to be de-facto standards.  Bundle open source along with the open hardware to make it even more accessible and embed rapid guide start for newcomers. Right now a key piece is the Wireless Sensor Net. If there were a good open source WSN available and supported by manufacturers, it could enable a groundswell of connected devices.

Build open source and open hardware educational IoT developer’s kits for ages 8 and up, for high school and college, to hit all levels of involvement and expertise. Support community hackspaces and places (ie Noisebridge) where everyone can learn about the digital world and programming.

We are seeing the leveling out of the development happening in all parts of the world. Radical innovation is happening everywhere. Open Source is helping shape this curvature.  This is the broader whole tide that we are seeing. Pinocchio is one great innovation emerging from Makers and Open Source, then we have IoT hubs such as SmartThings, Thingworx, or Xively (formerly Cosm).  There is a lot of crowdfunding, ideation, blooming of disruptive products looking to change the scene of things to come….
Support open source and open collaboration in everything, to create a culture of sharing and innovation, a culture of synergy in building the Internet of Things together. Involve customers as participants and makers of their own experiences. Make sure everyone has access to the information and support they need to build, maintain, hack, and repurpose their devices over time to promote a healthy ecosystem.

This time innovation is going global. The ideation is happening everywhere. There are many global Silicon Valley type hubs, other metros in the world, as well as global accessibility to the same information. We see startup mentality blossoming across all geo-locations.  Again, Semi-Conductors is contributing, helping pave the back-plane for innovation & connectivity for the development layers on top.  Global village of innovation is coming of age… Now.

 

Also read Part 1 and Part 2 of the Interview Series.