Tag Archives: IEEE MAC address

Finger on the IoT Pulse: ‘Presence’ Functionality

We talk a lot about connecting, networking, and securing the Internet of Things, and the billions of devices spread across the globe. Another essential piece of the IoT puzzle is monitoring those devices, specifically with what we call presence. 

Presence functionality gives IoT developers a way to monitor individual or groups of IoT devices in realtime. Whenever the state of the device changes, the change is reflected in realtime to a dashboard, with an alert, or any other way you want to display your tracking.

Internet-Of-Things-Presence

What Can Presence Monitor?

As soon as you start streaming large volumes of data, or signaling and trigger actions to devices, you need to know what devices are connected. So what kinds of device states can you monitor with presence functionality? Pretty much anything you want! With Presence functionality, you can build out custom device states including:

  • Online/offline status
  • Device health
  • Capacity for fleet management
  • Total device count in field
  • Battery/location status
  • Machine status (eg. currently working on X task, driver driving/offline)
  • Temperature and weather data from IoT sensors

With presence data, you can also log a history of device connectivity for audits and analytics. It’s not just about having realtime insight into your devices, but also tracking and logging performance, health, and other key metrics.

Why Is It Important?

Devices may get expensive: IoT devices can be expensive, so keeping tabs on your investment is essential. Device health presence monitoring gives you up to the millisecond health reports for device temperature, connectivity, battery life, etc, ensuring you that your device is 100% operational, all the time. And if any issues arise, you’ll know immediately that maintenance is required.

Devices may be imperative to operations/business: If IoT devices are at the core of business and operations, monitoring their health and status is paramount. Whether it’s agriculture readings, security sensors, or delivery fleet management, up to the millisecond device status can make or break a business.

Device Analytics: Accurate and up to date statistics and analytics is important to any IoT application or business. Presence functionality can store, retrieve, and playback collected analytics, for example, to give a history of device connectivity or health for audits.

Machine-to-Machine and IoT Use Cases for Presence

As we know, connected devices come in all shapes and sizes. And as IoT devices get smarter, more connected, more secure, and faster, they’re use in the field is skyrocketing across the globe. And as we add more devices into the field, realtime presence functionality is just as important as our device networks and IoT security.

Agriculture: As with other connected technologies, the Internet of Things has found heavy adoption in the agricultural industry. Sensors and monitoring devices for temperature, irrigation, weather patterns, and harvest management give farmers a realtime, accurate data stream, giving them full control over their agriculture system. As a result, keeping tabs on their vast system of IoT devices with presence functionality is key.

Figure-1_Rosphere-537x300

Connected Car/Shipping & Freight: Smart cars are shifting IoT boundaries and constitutes a disruptive and transformative environment. Connected car represents a large number of IoT use cases for automobiles including taxi, fleet management, shipping and freight, and delivery service. Connected cars require a secure and reliable connection to counter the various roadblocks that arise in the wild, such as constantly changing cell and network towers and dropped connections.

For taxi, shipping, freight, and delivery management, custom presence functionality is a vital component of the business, providing realtime custom vehicle and device states, such as vehicle and cargo capacity, location data, and device health.

2a818e001e8179cd0a0888b8dba99809

Home Automation: We’re well aware that our homes are getting smart. It seems today, every appliance has an IP address. It’s safe to say that the smart home market is prepared to take the world by storm. Especially for applications that enable users to control their homes remotely, presence functionality is essential. In the smart home, presence gives users a realtime view of their devices status (lights on, doors locked, water leak, thermostat, fridge temperature, etc). And that’s the basis of a solid home automation solution.

Internet-of-Things

Presence on the PubNub Data Stream Network

PubNub Channel Presence is one of the core features of the PubNub Data Stream Network. It enables developers to add user and device detection to their web, mobile, and IoT applications, giving realtime instant detection and notification of user/device status. Built on the global PubNub Data Stream Network, no matter where the devices are located, you can get an accurate and reliable reading on any custom device state you want.

For a quick tutorial on using Presence for IoT devices, whether it’s a network of 1000 connected devices or a single Arduino, check out our blog post: Realtime IoT Monitoring for Devices with PubNub Presence.

RF Modules: A low risk path to wireless success

It is rare for a day to go by without having at least one conversation with an embedded developer, project manager, Maker / hacker or hobbyist where the subject of the Internet of Things (IoT) and/or wireless connectivity does not come up in discussion.

Today, IoT is certainly a major focus in product development and wireless is a major component of that solution. Usually, my conversation centers around comments from product developers regarding how difficult it is to develop a production ready wireless product on the first pass; it is especially difficult for the growing number of product developers or Makers that are just getting their feet wet in wireless design and development.

Only the very experienced RF designers are willing to start from scratch when beginning a new wireless product design. For the rest of us, we look for proven reference designs and more recently, the first thing we browse for is an off-the-shelf certified module.

In comes Atmel! The company has recognized for a while that RF modules provide a low risk path to success, for those seeking to add wireless connectivity to their product. And, it is this realization that has led to a growing family of RF modules to meet one’s wireless needs in Wi-Fi, 802.15.4, and BLE coming soon.

Examples of 802.15.4 Zigbit wireless modules.

The certified wireless module approach turns a complicated RF design task into an easier, more manageable digital peripheral interface task. Don’t misunderstand me, one still must be careful and adhere to best practices in your embedded PCB design to support an RF module; however, it is a much easier to be successful on the first go-around when using an RF module than it would be starting from a chipset or IC layout and design.

typical wireless module

A typical wireless module with on board “chip” antenna (white rectangle shown in image).

For the most part, the layout of impedance controlled traces, and antenna layout and matching are all taken care of for you when using a module. Usually, the most difficult thing you have to consider is placement of the module on your target or carrier board, such that your placement does not adversely affect the radiation pattern or tuning of the antenna.

Not only does the design become simpler, but the costs associated with getting a wireless device to market becomes lower.  Because in general, all of the fees and time associated with governmental certification testing for agencies like the FCC, CE and IC (Industry Canada), are already taken care of for you. Also in most cases, the modules are shipped with a unique IEEE MAC address pre-programmed into the module’s non-volatile memory, so that each unit has a world wide unique address. By using a module that contains this pre-programmed assigned address, you can avoid the costs of obtaining a block of IEEE addresses assigned to your company.

At first glance, the cost of using a complete pre-certified RF module in a production design, as compared to implementing one’s own chip set design may appear more expensive. However, for those doing this for the first time with a staff that does not have a lot of RF design and certification experience, the hidden costs and time required to achieve the performance your application requires and to get the product into the market, leads to a lot of unwanted surprises requiring multiple attempts to achieve the final goal. Starting with a module helps get the product into the market faster with less risk, and provides a way to get product acceptance, before having to deal with cost reduction activity’s that may require moving from a module solution to a chip set solution.

For those that get to the position where the use of a pre-certified module on a proven product requires a cost reduction, Atmel has a solution ready for you. Each of the Atmel Zigbit modules have complete Altium design files and Gerber files available for free download via the Atmel website. This will enable you to take the exact design files that were used to create the module you were using or considering, and to use these files to devise your own version of that design. You can then have your new chip based layout manufactured by your own contract manufacturer; thus, you do not have to start over from the beginning and you already know that this RF design works well and can be easily certified. Governmental certification of your own board layout would be required, and in the case of the United States, you would be given your own FCC ID assigned to your company for this product.

For those product designers that are experienced in RF layout and design, a module can allow you to create a proof-of-concept product prototype very quickly and with little effort. Once the concepts have been proven and features have been decided upon, you can migrate from module to chip set design for high volume production.

Software developers, Makers, and hobbyists can eliminate a lot of the issues often found when trying to create low volume wireless products by obtaining one of the many Atmel evaluation boards that contain a wireless module.

These boards typically come with a bootloader and with some form of pre-loaded firmware to get you started immediately. You can explore that topic in more detail in an earlier Bits & Pieces post that describes the wireless composer and the Performance Analyzer firmware.

The Performance Analyzer firmware is what typically comes pre-installed on a Zigbit module “evaluation” board. Otherwise, the module itself would come with only a pre-programmed bootloader.

module evaluation board

You can learn more and download user guides / datasheets for the Atmel Zigbit modules via this link.

With the Internet of Things becoming such a focus at this time, you may want to get started with a pair of low-cost wireless module evaluation boards and use this platform to learn wireless connectivity techniques that can be used in your current or future job.  Demand for those with knowledge and experience in wireless connectivity and embedded systems is growing greater everyday.

Whether you’re a Maker or an engineer that wants to create a home project that requires a microcontroller and some type of wireless connectivity, you might want to take a look at the ATZB-256RFR2-XPRO evaluation board that includes the ATZB-S1-256-3-0-C module already mounted on it. This module is based upon the megaAVR microcontroller core and includes an 802.15.4 2.4ghz radio as a peripheral/.You may recognize the megaAVR core as being the same MCU core as used in the well-known and incredibly popular Arduino Uno board. You can use the familiar Arduino IDE for development and many of the Arduino libraries available on the internet will run directly on this module. Additionally, you can also find a bootloader and sample Lwmesh (Light Weight Mesh wireless networking) applications for this module here. (Search for for “ATmega256RFR2 Arduino Solution.”)

Look to our friends at Adafruit and Sparkfun to obtain various sensor breakout boards to complete your wireless connectivity projects.

Do you have big ideas? You can feel confident that with the 256k of flash program memory and the 32k of data sram available with the ATZB-S1-256-3-0-C module, as you will be able to create any Arduino application that comes to mind. And don’t forget, you have an onboard 802.15.4 2.4Ghz radio for your wireless connectivity needs. If you find you need additional features in your development and debug tools, you can simply move to Atmel Studio with its rich set of features.

Calling all Radio Amateurs CQ CQ CQ de NS1C… 

Are you now, or have you been in the past, involved in Amateur Radio? Have you been dreaming about QRP low power radios that are very small, battery operated, a complete radio solution, and cost in the $29 to $39 dollar range? You’re in luck — boards and modules are available that operate in the 915mhz or 2.4ghz radio bands! As a HAM radio operator, you are allowed to take the capabilities of these 802.15.4 radio modules even further than an engineer who is required to create a license free ISM radio solution. You can experiment with additional RF output power and experiment with high gain directional antennas (use the modules with u.FL RF connectors).

Maybe a nice field day project for next year would be to use a low power 15.4 radio from the top of a mountain or high hill and use mesh networking to see how many hops a group of participants can communicate over. Voice communication certainly could be implemented using external analog circuitry and some additional software; however, when getting started, you could stick to digital data communications or use the wireless microcontrollers to control or monitor other components of your Amateur radio station.

Parents teach your children…. or maybe, children teach your parents!

I am sure that everyone can think of many home or science fair projects where a parent and child can work together (hardware / software / documentation) and everyone can learn something new. Heck, in the end, you may actually invent the next great product that your family can introduce to the world!

Your possibilities are endless.