The thing about passwords is that their whole purpose is to provide security. But passwords are hardly secure themselves, as we all know now due to the recent string of breaches… Once passwords get out into the clear, it’s like Christmas for cyber-criminals. So what we need are secure passwords… obviously.
Passwords are big fat target for hackers. The fact that Target stores were the “target” of hackers it is almost poetic. Heartbleed is another dangerous example of private information being bleeding out into the open. An unsecured password is sort of like leaving your keys in the car on the street in a really bad neighborhood. In cyber-city, where all of us now live, every neighborhood is really bad. So, what can you do? Why not try to embed some hardware security to protect passwords? In fact, it’s rather easy to do with hardware key storage devices like Atmel CryptoAuthentication. Hardware key storage devices lock up the password and keep it from getting out of the system where it is entered, such as from a computer or ATM keyboard. In such an example, the only things that get transmitted between the keyboard and the authorizing system are cryptographic information; Specifically, what is transmitted is a random number from the crypto device to the keyboard system and cryptotographically processed response in the opposite direction. Let’s take a closer look at the details via the video below.
The platform here is a keyboard entry device on one side and the secure key storage device (in this case the ATSHA204A) on the other. The input could be from a smartphone or other things as well. The password is securely stored in the protected hardware memory which protects against hackers reading it. The secure memory is in the ATSHA204A device. When the password is entered into the keyboard, it automatically tells the remote device with the secure memory chip to send a random number challenge to the keyboard machine. The keyboard machine hashes the random number with the password that was just entered to create a digest using a cryptographic algorithm (e.g. SHA256). That digest is called the “response” (meaning the response to the challenge that was sent over). That response is then sent to the ATSHA204A for comparison to a calculation using the same random number and the stored password on the ATSHA204A. If the response and the hash on the ATSHA204A are the same, the password was correct (real) and the operation of the device connected to the keyboard is therefore allowed.
As you can see, the value of this operation is that a the only places the password go are into the system connected to the keyboard (the local system) and the secure, protected.
Benefits of secure password protection:
- Easy to implement
- Secret storage is completely secure
- Password is never in the clear
- Several Passwords can be stored in the ATSHA204A (up to 16 slots)
Atmel CryptoAuthentication™ products, such as ATSHA204A, ATECC108A and ATAES132, implement hardware-based storage, which is much stronger then software-based due to the defense mechanisms that only hardware can provide against attacks. Secure storage in hardware beats storage in software every time. Adding secure key storage is an inexpensive, easy, and ultra-secure way to protect firmware, software, and hardware products from cloning, counterfeiting, hacking, and other malicious threats.
Interested in learning more about Atmel CryptoAuthentication™ products? Read some of our latest articles in the Bits & Pieces archive here.