Tag Archives: hackerspaces

Atmel visits Beijing Makerspace… again


Beijing Makerspace is bringing tinkerers together to help make their IoT dreams a reality. 


Sander Arts, Atmel VP of Corporate Marketing, recently paid a special visit to the Beijing Makerspace on Tuesday, January 21, 2015.

Beijing Makers

There, not only did he explore the latest and greatest DIY creations, Arts participated in a well-attended press event with a number of journalists, tinkerers and entrepreneurs to discuss Atmel’s place at the heart of the rapidly growing global Maker Movement, and of course, the Internet of Things.

image-7

image-6

Located on the fourth floor of the International Digital Design Center in Zhongguancun, which has been dubbed China’s Silicon Valley, Beijing Makerspace is a community that gathers China’s Makers. The approximately 10,700-square-foot facility converges several open-source pieces of hardware such as the highly-popular AVR MCU, electronic platforms like Arduino and high-tech devices including 3D printers and robots — all the tools necessary to create next-gen IoT projects.

beijingmakerspace1

As we learned last year, Beijing Makerspace’s co-founder Justin Wang Shenglin believes that the community workshop can perhaps best be defined as a social enterprise. The establishing of the DIY hub for Wang wasn’t like starting a normal business. In fact, he tells the Chinese newspaper Global Times that it was more about finding a place where people with a common interest could come play, make and collaborate together. These people come from all walks of life — ranging from IT engineers and programmers, to designers and artists, to students and academics — and shared a common bond: making cool things!

Sander - Wang

“Having a creative idea about something is far from creating it, since craft is involved in the latter,” Wang told the Global Times in a recent interview. “Many people may start with a splendid idea, but end up finding it too hard to make it into a reality.”

As we’ve previously discussed on Bits & Pieces, Chinese government officials have also taken a keen interest in the Maker Movement in recent months due to its lucrative economic and educational potential.

Maker

“There is no other country that can perform better in craft and manufacturing than China,” explained Wang. “With an ever-growing market and firm support from the government, China is gaining its advantage in this new Industrial Revolution.”

China joins other nations, including the United States, in embracing the Maker Movement and its tremendous potential for entrepreneurship, by viewing this grassroots innovation as essential for staying competitive in our modern-day economic climate. As a May 2014 Slate article acknowledged, “The official rhetoric has a sense of urgency: China no longer wants to be seen as the ‘world’s factory,’ manufacturing goods that are designed elsewhere.”

Project

For instance, Shanghai’s municipal government has backed plans to build 100+ Makerspaces throughout the city, with each location is said to be equipped with a 3D printer and will host staff to help visitors with traditional crafts such as woodworking. Meanwhile, last year’s Maker Faire in Shenzhen attracted an estimated 30,000 people.

Wang adds, “China is a Maker’s paradise. All the materials they could want are here and extremely cheap.”

Hack the world: How the Maker Movement is impacting innovation

In March 2011, an earthquake and following tsunami rocked Japan, culminating in the worst nuclear disaster since Chernobyl. While the government focused on stabilizing the situation, the people of Japan were terrified of radiation, unaware whether it was safe for their families to stay in their homes.

(Source: Sean Bonner)

(Source: Sean Bonner)

A group of Makers out of Tokyo Hackerspace found a quick solution to lack of information by building a cheap and easy-to-use pocket radiation detector using an Arduino (a pint-size computer that’s relatively easy for anyone to program). They began making them, and most importantly, sharing the instructions online for anyone to reproduce. Through a partnership with Safecast, they were able to get the radiation data off of people’s phones and onto an online platform. Within a month, thousands of data points had been picked up, and people could determine whether they should evacuate. Even today, people all over the world are building these radiation detectors, iterating on the original design for new purposes. Fikra Space, a hacker group in Baghdad, has amended the design to track Depleted Uranium pollution in their region.

I use this anecdote as an example frequently as a glimpse into the power of the Maker Movement. A term that’s been widely popularized by technologists as of late, Makers are not necessarily persons with huge engineering prowess. Neither are they hackers with malicious intent. Instead, the term Maker defines a movement combining simple technology with the right culture of innovation and collaboration, to have impact at a scale that most startup founders, corporate innovators, and city legislatures only dream of.

What is a Maker?

Makers represent a subculture of tinkerers, artists, and engineers. It’s a culture that is akin to punks and Goths – it represents not just a style, but a lifestyle. It has crossed decades and countries effortlessly. It is an ethos: a fundamental belief that the world is made better by building, and taking things apart.

(Source: Kyle Cothern)

(Source: Kyle Cothern)

Makers thrive on several things:

1. Finding novel applications of existing technology

They are interested in breaking or hacking things to make them better, more efficient, or just more fun. ArcAttack is a band of musicians using massive Tesla Coils, alongside live and robotic musicians to create a spectacular show of musical prowess and technological innovation. Anouk Wipprecht, fashion designer and former Autodesk Artists in Residence created a Faraday Cage dress for this past Maker Faire in San Mateo, and people watched in awe as she performed alongside ArcAttack as bolts of lightning struck her on all sides without doing any harm.

2. Exploring the intersections between seemingly separate domains

Because the barrier-to-entry to be a Maker is so low (read: nonexistent), new domains of expertise and collaborations are the process on which they thrive. 3D printers, once an expensive technology allowed for the elite few companies that required them and those who knew how to operate them, is now at a price point and skill level that many can afford. Similarly, this technology is being used for everything from printing clothing to live organs and skin. The opportunities are endless.

3. Curiosity and voracious appetite for continued education and Do-It-Yourself

Why buy something when you can build it? Why not learn how to solder? (Think of the possibilities!) These are the fundamental questions that drive Makers. From craftsmanship to electronics, Makers build things that are inherently valuable to them at that moment, whether it’s building a smart coffee maker to building a table. The pride that you feel from learning a musical instrument or a new language is the high that drives Makers to learn more, and do more.

Community (Makerspaces, Hackerspaces, FabLabs, Oh My!)

(Source: Mitch Altman)

(Source: Mitch Altman)

Makers rarely work alone. Instead, they interact with an ever growing global community of hackerspaces, makerspaces, fablabs, and other collaborative spaces to share ideas and resources. Makerspaces have cropped up all over the world to give people access to tools, education and collaboration normally reserved for universities and corporate environments. These membership-based organizations range in size and structure, but share common tools such as 3D printers, CNC machines, electronics components, and more. These gyms for your brain have grown from several hundred to over 2,000 globally in a few short years.

(Source: MakerBot)

(Source: MakerBot)

Makers in collaboration can lead to some advantageous financial results. In 2008, Bre Pettis, Adam Mayer and Zach Smith schemed up a small, inexpensive and easy-to-use 3D printer within New York’s hackerspace, NYC Resistor. Later that year, they released their first version for consumers. 6 years later, MakerBot has sold over 44,000 printers, built a leading brand, and was recently acquired by Stratasys for $403M. A company born out of the Maker Movement, MakerBot has ushered in a new industrial revolution, characterized by collaboration and open-source culture. They’re not alone in this endeavor, companies like Adafruit IndustriesArduino, and countless others are blurring the line between play and profit.

The Art of Playfulness (or, How to Fail Often)

When communities are built on resource-sharing and experimentation, there is considerably less stigma around failing. You simply try again, plus some well-earned knowledge and battle (soldering) scars, along with the thousands of others within the community.

The Power Racing Series understands all too well the educational benefits of failure and have embraced it with a friendly competition. Power Racing Series was schemed up at Chicago Hackerspace Pumping Station: One by Maker and designer Jim Burke. The challenge: build a working electric vehicle, starting with a kids Power Wheels and $500. Race it against a dozen others at Maker Faires all over the country, and compete for both technical prowess and “moxie” points awarded by the crowd for the most creative and ridiculous teams. Chassis’ fly off, cars catch on fire, and general, hilarious mayhem ensues.

(Source: Anne Peterson)

(Source: Anne Peterson)

This race has gained tremendous traction as a friendly competition between makerspaces all over the globe , as a learning tool for engineering and imagination. Makers have competed from i3 DetroitNIMBY, and even MIT. While the teams are competing against one another, they also share knowledge, tools and tech between one another during the race. Currently the races are held at 7 Maker Faires in the US, and they are opening up a high school league to encourage use of the races as a STEM education platform for students.

Companies like Power Racing Series have grown organically from embracing the inherent silliness that is a result of constant, quick-fire iteration. They also understand that it offers a unique hands-on way to learn engineering sans classroom or textbooks. Similarly, littleBits has found a way to teach the basics of electrical engineering with magnetic Lego-like blocks that can produce anything from musical instruments to internet of things devices with a few snaps. Sugru has made an entire business out of fixing broken things with a fun new material with the texture of Play-Dough that fixes everything from soldering irons to motorcycle windshields.

Impact (Produce Locally, Share Globally)

Makers think big. They don’t think in terms of revenue or projected growth, they think in terms of impact. Unburdened by fear of failure or lack of resources, they make things because they are useful, or present a unique challenge. Because of this, and ingrained roots stemming from the open-source software movement, the technology created has the ability to be adapted and used all over the world, outside the bounds of traditional gatekeepers.

(Source: Eric Hersman)

(Source: Eric Hersman)

Makerspaces have permeated every corner of the globe, from Nairobi to Nicaragua, allowing access to shared resources not just within their individual spaces, but across borders. Just as Bre Pettis and team sought to solve the problem of expensive 3D printers, Makers are building things that are equally useful to them, and their communities.

BioCurious, a community of biohackers (yes, that’s a thing) in the Bay Area has found a way to make real vegan cheese by engineering yeast, raising over $37k on Indiegogo to fund the project. Two years prior, 4 girls in Lagos debuted a urine-powered generator at Maker Faire Africa, which provides 6 hours of electricity for every Liter of urine. While both projects are prototypes, both are reactions to clear, yet strikingly different needs of the individuals and communities involved.

Arduino, the pint-sized computer from Italy, is a tool for making an open-source micro-controller board and development environment that was inexpensive, cross-platform, and easy-to-use. Founder Massimo Banzi has succeeded in this endeavor, as Arduino boards have become the micro-controller of choice for Makers, and are used to power a variety of devices, from the previously mentioned bGeigie Nano to a variety of internet-of-things devices. The fact that Arduino is open-source allows anyone to iterate on the boards, whether creating smaller versions for wearables, or printing your own on paper.

DIY Drones, a website started by former Wired Editor-in-Chief Chris Anderson, sought a way to bring UAVS (Unmanned Arial Vehicles) from military to hobbyists. In a few years he’s been able to bring together an impressive community of Makers building drones and drone parts for a variety of purposes. Matternet has taken this movement and applied it to a very specific problem: the 1 billion people in the world that do not have access to all-season roads. This means, even though many of them have advanced telecommunications infrastructure, they cannot get food of medicine during an emergency. Founder Andreas Ratopolous saw the potential in UAVs far beyond what was being explored by hobbyist and has turned it into a viable business with massive impact.

What’s Next for the Maker Movement?

The Maker Movement has garnered a lot of attention over the last 5 years, but it’s not without it’s flaws. Hackerspaces and makerspaces, though great places to learn and innovate are difficult to scale, and can come with a host of organizational and cultural problems. Though there are a whole host of success stories of profitable business by Makers, most of the innovation is still culturally insulated and doesn’t ever make it to a business. Large brands have been attempting to leverage the Maker community to encourage internal innovation, but with little success. Why? By being exactly what the Maker moment loathes: large, secretive, and profit-driven.

The Maker Movement needs bridges, people who are passionate about everything that is at the core of the culture who are able to connect Makers to each other, and to the resources to translate ideas into tangible products.

As humans, we’re made to make stuff. It’s a fundamental part of our survival. The Maker Movement has built a culture on that core belief, and the creativity that it has unleashed has massive potential for the future of innovation across all domains, turning anyone from an engineer to a large organization into an entity capable of astronomical innovative potential.

creativetaboo_1399099807_37

Written by Madelynn Martiniere, this article was previously published on October 27, 2014 on Medium. 

Hackerspaces: A prelude to the Maker Movement and today’s Maker culture

So, what exactly is the Maker Movement? Do you remember that ever so distant yet memorable quote by Michelangelo? “Every block of stone has a statue inside it and it is the task of the sculptor to discover it.” 

Now, to further set this, [white fuzz] the channel just switched, we are tuned. Things will change right? They have changed. We have the Internet; we will have one layer more, eventually the arrow of technology will continue. There is one congruent dataset, which manifests all things to a new exponent. It’s the pulses and signals resulting from the exterior world meshed with the existing datasets of infrastructure, enterprise, and the consumer. Let’s speak of this layer. It will be filled with sensors, microcontrollers, and code. Already, we learned this from the app revolution and we are not going to remain in just this stage right? The code will be leaner and smarter. Coupled by the signal readings from millions of device upon device, node to nodes, nodes to node, the true power of distribution and networks will again marry now with other application recorded data in a mosaic of diversified integrations resulting from the intersection of data easily bridged from the cloud apps. Yes, the ones we are already familiar today touching from screen to screen to anticipate the next arriving notification.

The arrival of this integration of data will help filter and augment the world before us. Let’s reset to the modern era, thread modern computing to this notion, [for technology’s sake] we have also seen the Gartner quote by Jim Tully stating, “By 2018, 50% of the Internet of Things solutions will be provided by startups which are less than 3 years old”.

Prelude-Hackerspaces-Makermovement-IoT

The Digital Renaissance and the Maker Movement

Together with the accessibility and progress of open source and availability of community and embedded development boards [specifically wider use of Arduino Maker class boards], the times have certainly changed. A great deal of the complexities of these development boards are relaxed with onboard abstraction layers to loosen the programmatic rigidness of “hardware,” combined with the collective tuning of the community toward its development software.

Arduino IDE is now quite anchored into well-received feedback/contribution loops supported by the open source model — crowdsource progress and joint development roadmaps. Let’s not forget all the risky and obviously passionate Makers out there doing and bringing ideas to the forefront. The timing is right — found in the appetite to feed the market, the maturing cloud, the developed community, parity in prototyping, and the global production.

Prelude-Hackerspaces-Makermovement-IoT-China

Globalization of Hackerspaces and the Maker Movement | Photo Credit: Mitch Altman

As a whole, and to its sum of its parts, all community members are participants in the evolution of the ecosystem and community effort of “Making” with ease. At all aspects of the innovation engine cycle, the open source community couples quite well with hackerspaces, where one can congregate to surface ideas and mature them to fruition.

Prelude-Hackerspaces-Makermovement-IoT-Group

Open Source Community and Hackerspaces | Photo Credit: Mitch Altman

This is especially true where it applies to the mere process of creating a product. In fact, it’s now true to building things that 10 years ago you needed to be in a big company to make innovating things, but now it truly possible from an individual. Made possible to said horizon, there are the hackerspaces. It’s a place that shows signs of innovation and development, infusing wider spread of technology and community across all economic classes or cultures. In these facilities, these are technical and creative social clubs facilitating activities that include tinkering, machine tooling, 3-D printing, coding, open source, collaboration, and sharing. Some hackerspaces market themselves under the more benign-sounding label of “maker space”. More bluntly, this is really drawing attention as private incubators such as hardware accelerators fueling entrepreneurship and startups [an emulation of an innovation success formula taken from the original hackerspaces.

Prelude-Hackerspaces-Makermovement-IoT-Sculptures-Michelangelo

There is something about hackerspaces that brings people together that are made of some pretty awesome stuff. Call it “Voltron” if you will, why not? With drones rising and Maker Faires (or similar) blooming all around us, it all seems like the perfect unison of having people interlock together. As the notion of building robots continued to unwind, one fellow by the name of Chris Anderson saw that it would be much easier to have robots fly first than walk bipedal. More simply, it just felt and saw it to be much easier. Perhaps, something even more achievable and widespread adopted as the next step to bring about the age of drones.

Prelude-Hackerspaces-Makermovement-Farming-New-Industries-Innovation-Disruption

But still, wait, there’s even more to how this started. We also owe the spawning of drones to a unique origin where a group of people, hive together pursuing one ultimate quest.

Call it social science and synergy if you will. Something happens when a group gets “too large” and suddenly it all transforms from a conversation into a cacophony and a team into a mob then something incorporated too soon begins may wield the ugly cues of politics. Yet, going it alone is usually impossible if the task at hand is at all sometimes complicated [maybe the next best thing for technology]. Assembling IKEA furniture is probably best done as an individual, but things like raising a family, having a stand-up meeting, or shipping a meaningful product is definitely a team sport…

prelude-hackerspaces-makermovement-farming-new-industries-innovation-not-ikea

For hackerspaces, one of these unique values is in having opportunities to meet different people from all sorts of backgrounds. Combined in a common pursuit of sharing and making, there is a common thread of being willing to be giving their time and talents to others. Note, it was in what’s said as “giving” as the common notion in hackerspaces are the more you give, the more you get back, helping to change the course of things to come [individual pairing of ideas to the intellectual hackerspace benefit of networking ingenuity]. It’s all about the community. This is the hallmark of the Internet. The Internet started as a community in its deeper past with ARPANET. We are all reaping those originally rooted benefits today [first operational packet switching networks implementing TCP/IP] creating layer upon layer new industries, service models, and ecosystems (ie Apps, Cloud, M2M, IoT, etc). Now what we are seeing today sprout from city to city are hackerspaces. In fact, we may begin to see every community in a city drawing upon good reason to incubate and nest new hackerspaces. Perhaps, it’s a progenitor to something more in the next trend of innovation.

The digital life now is a result of the collision of software and hardware. Technology is fashion. Fashion is Technology. Both are now intertwined together in the speed and making of culture. Have you ever tried leaving your home without the mobile touch screen device or everyone has out grown to wearing the old flip analog/cdma phones of the past. Digital influence upon culture and self move along prevalently—the desire for hackerspaces are becoming more acquainted in many metropolitans.

There’s a secret sauce to the structure of the hackerspaces. Unravel this structure. From within, it reveals a true community based packed with peer-to-peer involvements. People with skills converge in distinct trades upon others with other skills. Combined, they make this union, transforming their once ideate policy of making, broadening their abilities coupled by a giving and sharing of others to expand the design envelope of possibilities.

Surely, one may see it as a digital and hardware renaissance, comparatively from the distant spark of the past. The foundries of artistry in Florence and Rome once prevailed, urging communities of artist to congregate and make creative expression toward emulating realism via sculpture, oil and canvas. Well, now it’s about achieving a more meaningful product. The canvas has changed, coalescing digital and hardware. Giving rise to an idea where the ideas mature into a minimal valuable product that is mapped to some form of developed connectivity. This some form of developed connectivity is what we call the Internet of Things or many of the products sprouting from emergent crowdfunding rooted by makerspaces or hackerspaces.

Prelude-Hackerspaces-Makermovement-Noisebridge-Hackerspace-Innovation-Youth

A common construct. Make Ideas, Make Genuis, and Make Things | Photo Credit: Mitch Altman

Now, let us imagine a place where people get together without a common construct or preconceived established code, they then converse, and collaborate. It is filled to the brim with entrepreneurs and inventors of all types working on projects that they hope will change the world or at least convinced to usher an adoption to things making what we usually do more easier or enhanced.

Many of them are on laptops or standalone computers frantically typing business plans or hacking out code; others are making phone calls while trying to set up connections wherever they can.

Prelude-Hackerspaces-Makermovement-Noisebridge-Hackerspace-Inside-Sharing

Hackerspaces have an environmental core that keep ideas flowing | Photo Credit: Mitch Altman

As all the chaos goes about, one can see that in this space is an environmental core that keeps the magic flowing around innovation. It is the center foundation of what the area will turn into. While the outer linings are being fine-tuned and polished, the inner workings remain relatively unchanged. The concrete has been laid; the electrical wires have been strung throughout the wooden frames and the insulation and drywall is mostly there, all while a wireless network is hangs throughout the air. Projects can begin even if the air conditioning isn’t hooked up yet.

As long as there is a good foundation, people can get stuff done. The rest of the work on the outer edges will always be changing. Paint will cover the walls in different shades and dust will always need to be cleaned up. However as time goes on and unless a major change happens, all the people running the space will need to do is adjust the dials of the environment (when needed) and continue progressing the community. Once the foundation is done first, the rest will fall into place.

Next up, read the 1:1 interview with Mitch Altman, co-founder of Noisebridge San Francisco as we dive deeper into hackerspaces, the Maker Movement and more

 

 

Video: Atmel talks Makers, Arduino and IoT at ESC Brazil

This past August, Atmel had the opportunity to be an exhibiting sponsor at the Embedded System Conference in São Paulo, Brazil. Aside from showcasing our latest IoT solutionsAtmel | SMART product line and AVR microcontrollers, we were fortunate to also have time to interact with the vibrant Latin American embedded community.

Sander Arts, Atmel VP of Corporate Marketing, shared detailed insight into DIY culture, as well as the integral role Atmel plays in fueling the emerging embedded community. Additionally, Arts addressed the growth of the worldwide Maker Movement, showcasing a variety of startups (e.g. Pebble and MakerBot) who each got their start using versatile a range of Atmel 8- and 32-bit MCUs.

“There are over 217, in this particular moment, based and built around an Arduino (and AVR),” Arts revealed. “Specifically, there are over 160 AVR based projects on Kickstarter, of which 103 successful, collecting $7 million in funding.”

Arts went on to explore the newest addition to the Arduino family, the Arduino Zero — a simple, elegant and powerful 32-bit extension of the platform originally established by the popular ATmega328 based Uno.

Arts added that there are now over 1,000 Makerspaces and communities around the world, including a number of nearby Brazilian hackerspaces.

Shortly thereafter, the Atmel VP of Marketing had the chance to sit down with Garoa Hacker Clube’s Luciano Ramalho to further discuss the Maker Movement throughout the region, the company’s role in the DIY movement, embedded solutions and development environments, and of course, the budding popularity of Arduino.

During his Makers Club interview, Arts hinted at a couple of “additional developments around the Internet of Things for Makers,” which we now know was the Arduino Wi-Fi Shield 101 — a shield which enables rapid prototyping of IoT applications using the highly-popular open-source platform.

Throughout the week, there was a tremendous amount of real buzz and excitement amongst the embedded engineers, developers and hobbyists in attendance. Caminhos de Sucesso Editor Jose Antonio Purcino caught up with Atmel Senior Product Marketing Andreas Eieland and EE Times’ Max Maxfield to explore the latest hot trends and topics in embedded design, IoT and wireless.

“The Internet of Things is nothing new, as we have been connecting MCUs to sensors and analyzing the data for a long time,” Andreas Eieland, Atmel Senior Product Marketing Manager, told EE Times. “But what is new is the technology options available for engineers to develop connected systems without the high degree of complexity of the past.”

Next, the Atmel team will be heading to Electronica 2014. Here’s a quick look at the tech you can expect to see next month in Munich.

Maker culture growing in Southeast Asia

After many major tech manufacturers left the area in the early 2000s, many citizens throughout Singapore began adopting an ‘If it can be bought, buy it’ attitude when it came technology. Now, with the help of a strong Maker community, a DIY mentality is growing within the region. There is plenty of evidence that the Maker culture is taking hold within Singapore.

denisa

In addition, the ongoing acquisition of tech startups throughout Southeast Asia has attracted the attention of investors who understand the need for continued innovation. According to Assistant Professor Denisa Kera of the National University of Singapore (NUS), the open source movement has been playing an integral role in encouraging new ideas across the region.

“Hackerspaces attract some of the most interesting people you can meet in a city; the pragmatic visionaries who are not afraid to take on any challenge, but jealously protect their autonomy and freedom. They actually preserve the original mission of the universities, which is academic freedom,” Kera told TechInAsia in the context of a wide-ranging interview with the publication.

Testament to the rise in DIY, the recent Maker community event MakersBlock was a massive success — having attracted over 100 Maker participants and hosted more than 50 free workshops in July.

Continuing on the growth of the Movement, individual Makers like the team at Chibitronics has jumped onboard the DIY wave. The Chibitronics team has a goal of offering electronics education to local youth through simplistic circuitry designs. They offer a series of simple, yet informative electronics tutorials on their website and sell kits for electronics projects aimed for the younger generation. The Chibitronics site offers an active community forum where young Makers can share their projects and find inspiration.

Following in these footsteps, groups like the Singapore Makers are growing rapidly in size and contributing valuable knowledge to the community. Singapore Makers have made a concerted effort to connect designers with MakerSpaces where they can develop their ideas in the ideal environment.

“Most people think it is about the freedom to do research, but it is more than that. We need a space or an institution which will enable citizens to develop skills necessary for taking an active part in the public life of their communities. Hackerspaces are the best place to gain such knowledge and skills on your own terms,” Kera expained.

10894316493_acc71d2bfc_z-600x600-1

With the economy constantly in flux, it is positive to see the younger generations within Singapore are adopting a DIY attitude. “Innovation takes time. And this time, it seems Singapore is sinking the right roots for the long term,” writes Techgoondu‘s Alfred Siew.

Kera also referenced Shenzhen, China, where she is following the open hardware scene with the help of Bunnie Huang, David Li and Silvia Lindtner; furthermore, the professor described Shenzen as a diverse community of people from all over the world that innovates and works with local companies. She notes, “It’s a wild place for hardware innovation, officially they describe it as a special economic zone, but I think it is more like 1940′s Casablanca, where all connections are possible.”

In terms of Singapore, Kera says Hackerspace.sg and Sustainable Living Lab are her “second homes” in the country, as they were always supportive of her projects. “I like hanging out there, especially now when so much is starting to happen and there are so many fantastic makers you can meet on these Arduino meetups at Silicon Straits. I think now is the right time for people that are curious to join and start some projects in either of these places.”

lifepatch

Looking towards the future, Kera says she would like to see Fablabs and Makerspaces established in universities and local neighborhoods throughout the region.

“It would be best if we can combine them both, so anyone can come and learn some skills but also have access to tools needed for some small startup project. Hackerspaces grant members more space to define concepts, but also to simply find and discuss important issues related to science and technology. It creates a community space that engages and empowers people rather than another rat race,” she added.

The good news is that there has been a rise in Singapore-based companies developing innovative projects in recent months. One example is the TouchPico, a pocketable Android PC cum projector that allows a user to easily interact with games and other programs on a wall, just about anywhere you go. In addition, there has been a budding interest of young attendees inspired to attend Maker Faires. “Any culture starts easier from young, and learning how to program your first robot or interactive postcard is a great start,” Siew explains.

Atmel continues its commitment to inspire the global Maker Movement, as the company’s microcontrollers (MCUs) have been powering nearly every Arduino board on the market today. Our easy-to-use 8- and 32-bit MCUs are powering the worldwide Maker communities, spanning from Silicon Valley to Singapore.

Interview: Jean-Noël talks Ootsidebox

Jean-Noël says projected capacity is the primary principle behind his Atmel-powered Ootsidebox, with an electric field projected in front of the existing touch surface affected by movements of the hand. Simply put, it is possible to calculate 3D coordinates and recognize certain gestures by measuring the perturbations of an oscillator caused by the movement of the user’s fingers (or an object) at several centimeters from the control surface.

Recently, Atmel’s Tom Vu had the opportunity to discuss the Ootsidebox with product inventor Jean Noel Lefebvre. 

Tom Vu:

What is the basic history of Ootsidebox?

Jean Noel: I kicked off this project 6 years ago and have worked on it full time since March 2013. Most of the parts used to construct  Ootsidebox are actually off-the-shelf electronics.

ootsodebox1

More specifically, I used the Atmel AT90USB1286 microcontroller (MCU) to power the device. Currently, I am exploring the possibility of meshing the popular Unity 3D gaming Engine with Ootsidebox. Combining a well known gaming engine will help us tease out more latent, long-term potential for the project, while simultaneously expanding the boundaries of game play with touchless or hybrid touch/touchless technology.

TV: How does Ootsidebox differ from other touchless and gesture sensor solutions?

JN: First of all, there is nothing at the center. For the microchip solution, you need a center electrode with two layers integrated within the body. In contrast, Ootsidebox is designed to be platform and device agnostic. In fact, the incasing can be modeled to fit around existing technologies and devices. Take, for example, example, the Android or iPad. The idea that you can simply wrap this touchless interface around existing devices and products opens new possibilities while enhancing use-cases for existing devices.

ootsidebox2

With this external fitting, much like an accessory, one can quickly enable their devices to be touchless, with gestures executed from within 10cm (set to double very soon) at maximum in front of a small screen. The device can be used in many different scenarios. For example, say you are in the kitchen cooking with greasy hands filled with sauce. The Ootsidebox can be set to seamlessly interact with various kitchen appliances – without the user ever having to touch knobs, buttons, glass, dials or sliders. Instead, activating/adjusting appliances can be performed via simple gestures (left to right or circular motions). Of course, there are many additional applications that can benefit from a touchless interface, ranging from home consumer device, gaming, health or even industrial uses.

TV:  Can you tell me more about the product design?  Is there any particular reason you chose Atmel AVR?

JN: The design is very simple, using only well known “stock components” found on any distributor or reseller site. The more complex part may be found in the 14bits DAC in SPI. Most of the components are “old school” logical chips such as 4000 family (my best friends for a long time in electronics). As for the microcontroller, I didn’t need high performance uC, so 8 bits were enough. The idea is to prepare Ootsidebox for mainstream adoption via a strategy of simplicity, a philosophy which fits well with Makers and the open source community. In terms of selecting the appropriate uC, I was careful to precisely balance price and performance. I also took into consideration various factors such as the large AVR community, availability of open source libs and the quality of the support and tools from the chip manufacturer. The mindset, reputation and philosophy of the brand (Atmel and Arduino) helped steer my uC choice. In fact, startups today are very closely tied to Maker Movement, reflecting Arduino and Atmel. That’s why I’m very confident when choosing Atmel, because Atmel and the Arduino community really support the Maker Movement today.

TV: How does Ootsidebox differ from other platforms on the market?

JN: It’s really a control device that computes touchless gestures versus touching and manipulating. Most of us are quite familiar with the ongoing touch revolution, as we use the very same interface interacting with smartphones and tablets on a daily basis. In addition, there are already commercially viable products such as Android devices equipped with sensor hubs that are designed to process gestural movement of the hand.

ootsidebox3

Ootsidebox differs on many levels, as the device is meant to be an add-on or fitting to an already existing device. Easy modification will encourage HMI enhancements for existing products or emerging devices. Remember, a consumer/user does not have to be married to just one product line from a major manufacturer. With Ootsidebox, you can control the devices without touching; move up, down, side-to-side, rotational, and even emulating the click of a button. Perhaps most importantly, the touchless interface will undoubtedly inspire future design roadmaps. For example, the touchless form factor is perfect for industrial and medical use. Just imagine a dentist needing to activate or handle various devices during treatment when messy hands are not necessarily ideal.

TV: What is the future of Ootsidebox? Do you plan on making it open source?

JN: Yes, there are plans to launch a campaign on Kickstarter or Indiegogo to attract more involvement in the development and use of this touchless sensor solution. The platform and innovative slope for additional development is limitless. We plan on releasing Ootsidebox as open source / open hardware, complete with specs for mechanical design. Crowdsourcing will help spur additional innovation, while allowing the platform to accommodate a wider degree of functionality. 

TV: How do Hackerspaces influence your work?

JN: A few years ago, disruptive products and ideas were conceived in garages. Today, the very same process takes place in Hackerspaces, where creativity thrives and technical skills abound. By designing projects in Hackerspaces, Makers and engineers are fully connected with a worldwide network of creative people boasting different backgrounds. This synergy significantly accelerates the innovation process.

TV:  What is your personal experience with AVR microcontrollers (MCUs) and Arduino boards?

JN: I was using other brands before I discovered the benefits of AVR uC during my discussions about Ootsidebox with my friends at Elektor Labs.

ootsidebox4

Also during my stay at Noisebridge Hackerspace, Mitch Altman was using AVR Arduino to teach electronics for newbies (I really love what’s happening there). My first experience with the Arduino environment was with Teensy++ 2.0, based on the AT90USB1286 MCU. This Atmel AVR microcontroller is the one I used for my last prototype of the Ootsidebox tablet accessory, which will be launched soon on Kickstarter or Indiegogo. We are also working on a smaller project with Elektor Labs. Essentially, it’s a “3D Pad” built in the form of a shield for Arduino.

TV: Are touchless gestures the future of user interfaces?

JN: Touchless gestures are a part of the natural evolution of the more traditional user interface. It’s a way to provide a more natural and intuitive user experience, which is somewhat of a growing requirement due to the proliferation of complex equipment in our everyday life. Of course, touchless gesture interaction is also more natural. In the future, with the help of Ootsidebox technology, product designers and Makers will not create electronic platforms to “manipulate” or “interact” with devices, but rather, for individuals to directly “communicate” with them instead.

Really, people expect them to be as smart as living entities. I learned that during various discussions with scientists about the project. In the brain, “communicating” vs. “manipulating” simply does not invoke the same connections pathways. Clearly, touchless and gesture UI are paving the way to a very fascinating evolution of consumer electronics in the near future. That being said, I see touchless user interfaces complimenting, rather than replacing, multi-touch, much the same way the mouse didn’t replace a keyboard.

Clearly, this kind of technology can help save lives, while reducing nosocomial risk in healthcare environments. It may also allows drivers to stay more attentive to the road when navigating with gesture-based infotainment. Personally, I’m dreaming of disruptive aesthetic designs in the field of high-tech consumer electronics. I can’t wait to see what a guy like Philippe Starck will be able to create. As I noted earlier, this project is 100% open and we invite everyone to participate on Twitter. Just post your questions and suggestions here: @OOTSIDEBOX, while including the hashtag #AtmelBlog. I’ll answer you personally. You can also check us out here on Facebook