Tag Archives: graphene

First graphene-based flexible display produced

Scientists have long worked to harness the unusual properties of graphene, a two-dimensional sheet of carbon atoms. As previously discussed on Bits & Pieces, it is believed to be the strongest, most lightweight and flexible material, and ultimately has the potential to revolutionize industries across the spectrum, from healthcare to electronics.

0615bac5-ccba-4d1e-a861-cf403d1c1a16-1410272000237

Now, it appears that developers are inching closer to a commercial breakthrough. A flexible display incorporating graphene in its pixels’ electronics has been successfully demonstrated by the Cambridge Graphene Centre and Plastic Logic, marking the very first time graphene has been used in a transistor-based flexible device. The project, which was funded by the Engineering and Physical Sciences Research Council and the EU’s Graphene Flagship, is just the first step towards a wider implementation of graphene-like materials into flexible electronics.

The prototype uses an electrophoretic film, which is similar to the screens used in today’s e-readers with the added benefit of being flexible. In future iterations of the device, the research team will look at using liquid crystal (LCD) and organic light emitting diodes (OLED) technology to produce color images.

“The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits,” the report adds.

The ultra-flexible graphene layer may enable a wide range of products, including bendable and foldable electronics. Graphene can also be processed from solution bringing inherent benefits of using more efficient printed and roll-to-roll manufacturing approaches. However, it still remains unclear as to when such displays will be used and in what devices.

“The potential of graphene is well-known, but industrial process engineering is now required to transition graphene from laboratories to industry,” explained Indro Mukerjee, CEO of Plastic Logic.

 

New material for flat semiconductors (usable bandgap)

Scientists have long worked to harness the unusual properties of graphene, a two-dimensional sheet of carbon atoms. However, graphene lacks a single critical characteristic that would make it even more useful: a property known as a bandgap, which is essential for designing devices like computer chips and solar cells.

As such, researchers at MIT and Harvard University are currently experimenting with a two-dimensional material whose properties are very similar to graphene, albeit with certain distinct advantages – including the fact that this material naturally boasts a usable bandgap.

Photo Credit: MIT

The research, just published online in the Journal of the American Chemical Society, was conducted by MIT assistant professor of chemistry Mircea Dincă and 7 co-authors.

The new material, essentially a combination of nickel and an organic compound known as HITP, also has the advantage of self-assembly. Indeed, its constituents naturally assemble themselves, a “bottom-up” approach that could lend itself to easier manufacturing and tuning of desired properties by adjusting relative amounts of the ingredients.

According to Dincă, two-dimensional materials that possess extraordinary properties is “all the rage these days, and for good reason.”

 To be sure, graphene offers optimized electrical and thermal conductivity, as well as considerable strength. However, lack of a bandgap forces researchers to modify it for certain uses, which tends to degrade the properties that made the material desirable in the first place.

The new compound, Ni3(HITP)2, shares graphene’s perfectly hexagonal honeycomb structure. In addition, multiple layers of the material naturally form perfectly aligned stacks, with the openings at the centers of the hexagons all of precisely the same size, approximately two nanometers (billionths of a meter) across.

During a series of initial experiments, researchers studied the material in bulk form, rather than as flat sheets. As Dincă notes, this makes the current results – including excellent electrical conductivity – even more impressive, as these properties should be better yet in a 2-D version of the material.

“There’s every reason to believe that the properties of the particles are worse than those of a sheet,” he explains. “[However], they’re still impressive.”

Photo Credit: MIT

Perhaps most importantly, this is just the first example of what could eventually be a diverse family of similar materials built from different metals or organic compounds.

“Now we have an entire arsenal of organic synthesis and inorganic synthesis [that could be harnessed] to tune the properties, with atom-like precision and virtually infinite tunability,” he adds.

Such materials might ultimately lend themselves to solar cells whose ability to capture different wavelengths of light could be matched to the solar spectrum, or improve supercapacitors used to store electrical energy.

 Last, but certainly not least, the new material could lend itself to use in basic research on the properties of matter, the creation of exotic materials such as magnetic topological insulators, or materials that exhibit quantum Hall effects.

“They’re in the same class of materials that have been predicted to have exotic new electronic states. These would be the first examples of these effects in materials made out of organic molecules. People are excited about that,” Dincă concludes.