Tag Archives: FLORA

Turn your room into a night club with these sound-reactive lights

This Maker installed 12 meters of FLORA-driven NeoPixels to his apartment for a lighting system like no other. 

If you’re having a hard time deciding on which of the excellent (?) candidates to vote for this election cycle, perhaps Charlie Gorichanaz’s sound-reactive room lighting will swing your opinion. He doesn’t appear to actually be running for office, but at least he will have the website setup for any future political aspirations.


Regardless, he has our vote for the most fun bedroom, as he’s mounted 12 meters of NeoPixel strips in the corners where the walls meet the ceiling. The lighting is controlled by an Adafruit FLORA (ATmega32U4), which is normally meant for wearable use, but as shown here, can be quite versatile. This could be compared to how mere mortals put up comparatively boring crown molding.


This setup (explained here with diagrams and a parts list) was originally used in Gorichanaz’s apartment in Tokyo. After some code cleanup, it is now alive and well in the United States. You can see it shown in the video below.

If you notice that the audio is a little cleaner than you would normally expect, it was actually combined with the video after the fact. This is explained in the second link above, and could be useful for taking your DIY videos to a new level.

For another option, if you only want lights on one of your walls instead of the ceiling, here’s a sound-reactive panel idea inspired by the movie Ex Machina.

Building a crowdsourced, decentralized IoT network around the world

The Things Network is a low-barrier way to get started with smart city projects. 

When it comes to which kind of wireless network will be the go-to choice for the Internet of Things, the jury is still out: Wi-Fi, Bluetooth, 4G LTE, 5G, 802.15.4, the possibilities go on and on. And pending experiments underway in Amsterdam go as planned, don’t be surprised to find LoRaWAN as a frontrunner on that growing list. For those uninitiated with the technology, LoRaWAN is a wide area network that boasts low battery, low bandwidth and long-range wireless communication. It enables things to talk to the Internet without the need for 3G, Wi-Fi or Bluetooth — meaning, no codes, heavy battery consumption or monthly subscriptions necessary.


This long-range WAN is a practical suitor for smart city and M2M applications, as seen throughout the Dutch capital. In this particular case, Amsterdam has tapped the open IoT data network, The Things Network. Due to its seven-mile reach and affordability, the non-profit organization has been able to cover the entire city with only 10 gateways. And unlike other similar municipality projects, this one was entirely crowdsourced and implemented in a matter of six weeks with help from third parties, such as the Port of Amsterdam, The Next Web, KPMG, Deloitte, Peerby and Trakkies. 

There is, however, one minor speed bump on the road to a distributed, citizen-owned service: each of the currently available LoRaWAN gateways cost around $1,200, which isn’t so great for global scalability. Cognizant of this, The Things Network decided to launch a Kickstarter campaign offering a consumer-friendly base station with a price tag that’s only one-fifth of other products currently on the market.


“The Internet was created by people that connected their networks and allowed traffic from, to and over their servers and cables to pass for free. As a result, there was abundant data communication and exponential innovation. The Things Network is doing the same for the Internet of Things by creating abundant data connectivity. So applications and businesses can flourish,” the team explains.

The community-led initiative is hoping to make it easier for those looking to set up their own networks thanks to three new pieces of hardware: The Things Gateway, The Things Uno and The Things Node. The Things Gateway is at the core of it all. This small, simple-to-install gadget acts as the router between the things and the Internet. Not only does it link to your Wi-Fi or Ethernet connection, it runs open hardware, uses GPS to determine its location and the node’s whereabouts later, and serves up to 10,000 nodes.


Meanwhile, The Thing Uno is like an Arduino Uno but with LoRaWAN capabilities. This lets you upgrade your existing Arduino projects by making wireless with a several mile radius. Compatible with existing shields and the Arduino IDE, the board includes connections for an optional external antenna on the breakout circuit to better optimize the range. What’s more, The Things Network is collaborating with 3D Hubs to make a customizable 3D-printable enclosure for your Uno.

But that’s not all. The Thing Node is a keyring remote equipped with sensors (movement, light and temperature), an RGB LED, a button and three AAA batteries, all housed inside a waterproof shell. This “matchbox of sensors” can be integrated with your IFTTT account, as well as employed to devise your own low-cost prototypes applications for a Things Network in your town. Example use cases span from bike finders and pet trackers to smart doorbells and security systems, and so far, teams in Boston, Sao Paulo, Buenos Aires, Cape Town, Kochi, Sydney and Manchester have all begun actively pursuing projects.


Interested? Head over to The Thing Network’s Kickstarter campaign, where the foundation is currently seeking $170,036. Delivery is slated for July 2016.

Made with Code helps design Zac Posen’s FLORA-powered LED dress

Zac Posen teamed with Google’s Made with Code to create a black dress that displays a pattern created by LED lights.

More and more, we’re seeing the fashion and technology worlds come together in ways never before imagined. There’s your less ‘out of the ordinary’ wearable devices like fitness trackers and watches, but then there’s smart garments that can do everything from react to your body’s temperature and mood to ambient sound. With the advent of conductive thread, mini microcontrollers and a burgeoning Maker community, the possibilities of what can be sewn and coded together are truly endless.

pasted image 0 (2)

Demonstrating just that, Google’s Made with Code and Zac Posen teamed up to show how computer science can push the boundaries of what’s possible in fashion using technology developed by Maddey Maxey and electronics from Adafruit. Students had the ability to log onto Made With Code and select a mysterious LED-based project.

At the time, the girls had no idea as to what they were contributing to but were excited nonetheless. The result? An interactive dress converging Posen’s “Los Angeles at night” inspiration and the students’ coding skills that debuted at the finale of the Zac Posen Spring 2016 Fashion Show, which kicked off New York Fashion Week.


All eyes were on the LED-embedded dress worn by Coco Rocha as it dazzled the runway inside a packed auditorium at Manhattan’s Industria Superstudio. The black piece featured short sleeves and a mesh skirt, along with 500 tiny lights that were programmed to emit different animated patterns — all controlled by an Adafruit FLORA (ATmega32U4).

“There is nothing greater than the fulfillment of creating something and seeing it come to life — to light up,” Posen explains.


Not only did they get to have a hand in designing the LED sequences, but 50 girls had the chance to attend the show and witness their collaborative effort light up the catwalk. For those of us who couldn’t experience the magical moment firsthand, Adafruit was lucky enough to capture it for us all to see! Watch below!

[Images: Google, Adafruit]

Maker creates a FLORA-powered, light-up necklace dress

In her exploration of e-textiles, one N.C. State student has crafted an illuminating necklace dress powered by FLORA.

Victoria Rind, a Maker studying textile engineering at North Carolina State University, recently devised an interactive dress with one goal in mind: to stand out. How’d she do it, you ask? Using an Adafruit FLORA and NeoPixels to light up its attached necklace.


“People want to be able to customize their style and clothing,” Rind explains. “What’s more customizable than a programmable dress?”

The idea for the dress was first conceived after witnessing other garments with built-in necklaces. Channelling her inner DIY spirit, Rind went out and bought a basic shift dress pattern and beads to create the dress, along with an FLORA (ATmega32U4) wearable MCU, four RGB NeoPixels and some conductive thread.

Once satisfied with the NeoPixels output, the Maker sewed the circuit to the dress beginning with conductive thread, and finishing it off with normal fiber to prevent a short happening in between the wiring.

“Without the extra layer of thread, the lines of conductive thread would constantly touch, and the light pattern would be glitchy and inconsistent,” Rind adds.

So what’s next for the engineering student? In five years, she aspires to bring functionality to textiles.

“I would consider my work a success if I could create clothing that adapted to changes in the environment,” she concludes.

[h/t Adafruit via N.C. State]

This LED t-shirt visualizes your body movements

Digi-Weirdo is a wearable project that explores the convergence of identity and guiding communication.

Zhen Liu just loves data. So much so that it has inspired several innovations, namely her latest project Digi-Weirdo. Created as part of a class assignment at NYU’s Interactive Telecommunications Program, the interactive t-shirt was designed as a way to give clothing other roles than merely covering your body and helping to establish your personal identity. Instead, the Maker hopes one day such garments can be used to convey real-time emotions and enhance communication between one another by visualizing body movements through an LED matrix.


Built around an Adafruit FLORA MCU (ATmega32U4), the t-shirt is fitted with a battery for power as well as an accelerometer for analyzing body motions and translating them into a series of illuminated patterns. The LED matrix is embedded inside an inverted triangle that is sewn on the front of the shirt.


As Adafruit puts it, what may be most interesting about this project is that through some simple programming, a wearer can create a visual language of their own. See it in action below!

This interactive dress visualizes New York City’s subway

LEDs on this FLORA-powered dress light up according to nearest subway line.

For those of you who have ever lived in or visited New York City, you know just how intimidating the subway system can be. Cognizant of this, Boram Kim has devised a clever (and stylish) solution to the problem. As shown on the runway at NYU ITP’s Spring 2015 Fashion Show, the Maker created an interactive dress capable of locating the nearest station through illuminated LEDs.


The garment — which visualizes the entire mass transit map in silver thread stitched on a denim-like material — employs an embedded GPS module that can detect a wearer’s location and then highlight the closest subway line via a series of NeoPixels.


“For example, if the user is closest to Classon Ave. station, which is a G train, the whole G line will light up with green color,” Kim writes.


On the inside, the Maker embedded several Adafruit FLORA (ATmega32U4) and GPS modules, all of which are soldered together. A NeoPixel strip was cut to create smaller pixels for the various station lights, which were wired and hot glued to the inner lining of the dress. A 3.7V LiPo battery is tucked away inside a little pocket.

Surely one of the more innovative wearables we’ve seen lately, you can head over to the Maker’s official page to learn more.

This hoodie can sense and react to weather

This hoodie will emit various lighting effects based on the forecasted precipitation, temperature, and wind speed.

As they say, April showers bring May flowers. Or, in Barbara Eldredge’s case, a flower-covered hoodie that illuminates based on the weather forecast.

hoodie_0025_Screen Shot 2015-04-21 at 7.28.25 AM

The aptly-named Spring Hoodie, which is actually a combination of two inexpensive hoodies from Old Navy, is packed with an Adafruit FLORA (ATmega32U4), a CC3000 Wi-Fi module and a lithium battery, all hidden inside an inner pocket. 18 NeoPixel LEDs were embedded inside of fake flowers adorning the hood. In order to protect and conceal the wiring, the Maker turned one of the two sweatshirts inside-out and placed it directly within other. (Or as Eldredge calls it, create a “hoodie sandwich.”) Just so she never had to take the FLORA out, the Maker also added a button that is tasked with turning the wearable on/off.

“When I turn on the hoodie, the Wi-Fi module tethers to my phone, and the FLORA uses it to connect to a simple PHP web page pulling three-hour forecast data for the predicted precipitation, temperature, and wind speed from the Open Weather Map API,” Eldredge writes.


Once the FLORA is connected over Wi-Fi, the lapel flower emits green to show that it is indeed working. When it connects to the webpage, the ATmega32U4 based MCU collects the weather information and uses it to control the color, brightness and changing of the LED flowers. The color adjusts based on the amount of predicted precipitation. In other words, the more rain that is predicted, the more the LEDs will become blue (and not red/orange).

Meanwhile, the intensity of the LEDs is dependent upon temperature — the warmer, the brighter. Though she wanted some slight pulsing or suggestion of movement in the lights, the speed of this movement is actually dictated by the predicted wind speed. The faster the wind, the faster the lights will change or flicker.


“The Spring Hoodie is admittedly a pretty wacky piece of clothing. But after the cold wet winter we’ve had, I’m ready for flowers and color. And I like that it’ll always let me know how the weather’s going to be,” she concludes.

Interestingly enough, for those spring days where you can’t decide as to whether it’s too cold to wear a lightweight jacket, the hoodie will do it for you. Should the temperature dip below an appropriate level, the wearable won’t turn on at all.

Want a Spring Hoodie of your own? Head over to the Maker’s official project page on element14 here, and check it out in action below.