Tag Archives: EV

Atmel’s new car MCU tips imminent SoC journey


The fact that these MCUs are targeting highly-sophisticated connected car applications like infotainment and ADAS means that the journey toward bigger and more powerful chips is now inevitable.


The automotive industry has reached a new era marked by giant initiatives like infotainment, connected car and semi-autonomous vehicles. And, no one seems more excited than the MCU guys who have been a part and parcel of in-car electronics for the past two decades. However, the humble microcontroller is going through a profound makeover in itself in order to come to terms with the demands of the connected car environment.

Take Atmel Corporation, one of the top MCU suppliers, who has launched its SAM DA1 family of microcontrollers at Embedded World 2015 in Nuremberg, Germany. The automotive-grade ARM Cortex-M0+-based MCUs come with capacitive touch hardware support for human-machine interface (HMI) and local interconnect network (LIN) applications. The SAM DA1 series integrates peripheral touch controller (PTC) for capacitive touch and eliminates the need for external components while minimizing CPU overhead. The feature is aimed at capacitive touch button, slider, wheel and proximity sensing applications.

Moreover, SAM DA1 microcontrollers offer up to 64KB of Flash, 8KB of SRAM and 2KB read-while-write Flash. The other key features of SAM DA1 series include 45 DMIPS and up to six serial communication interface (SERCOM), USB and I2S ports. SERCOM is configurable to operate as I2C, SPI or USART, which gives developers flexibility to mix serial interfaces and have greater freedom in PCB layout.

Atmel | SMART SAM DA1 ARM based Cortex-M0+  microcontrollers

Atmel | SMART SAM DA1 ARM based Cortex-M0+ microcontrollers

The automotive-grade MCUs — operating at a maximum frequency of 48MHz and reaching a 2.14 Coremark/MHz — are qualified to the AEC Q-100 Grade 2 (-40 to +105degreeC). According to Matthias Kaestner, VP of Automotive at Atmel, the company is targeting the SAM DA1 chips for in-vehicle networking, infotainment connectivity and body electronics.

Atmel-Automotive-Touc-Surface-Demo-PTC demo board

Automotive touch surface demo at Embedded World 2015

The fact that the SAM DA1 devices are based on powerful ARM cores clearly shows a trend toward more performance and the ability to run more tasks on the same MCU. The Cortex-M0+ processor design comes with a two-stage pipeline that improves the performance while maintaining maximum frequency. Moreover, it supports a new I/O interface that allows single cycle accesses and enables faster I/O port operations.

That’s no surprise because the number of electronic control units (ECUs) is on the rise amid growing momentum for connected car features like advanced driver assistance systems (ADAS). However, a higher number of ECUs will make the communication among them more intense; so automotive OEMs want to reduce the number of ECUs while they want more value from the MCU.

Moreover, car vendors want to bring down the number of ECUs to avoid complexity within the larger car network. The outcome of this urge is the integration of more performance and functionality onto the MCU. Each ECU has at least one microcontroller.

Atmel and the Evolution of MCU

Atmel’s SAM DA1 device is another testament that the boundaries between MCU and SoC platforms are blurring. The fact that these MCUs are targeting highly sophisticated connected car applications like infotainment and ADAS means that the journey toward bigger and more powerful chips is now inevitable.

Atmel is an MCU company, and this product line has played a crucial role in its transformation that started in the late 2000s. At the same time, however, the San Jose, California–based chipmaker seems fully aware of the critical importance of the system-level solutions. Atmel calls the SAM DA1 family of chips MCUs; however, its support for more peripherals, larger memories and intelligent CPU features show just how much the MCU has changed over the course of a decade.

 Memory Protection Unit in Cortex-M0+

Memory Protection Unit in Cortex-M0+

Atmel has a major presence in the automotive market with its MCUs and touch controllers being part of the top-ten car vendors. It’s interesting to note that, beyond its MCU roots, Atmel has a lot of history in automotive electronics as well. Atmel was one of the first chipmakers to enter the automotive market.

Moreover, Atmel bought the IC division of Temic Telefunken Microelectronic GmbH for approximately $110 million back in 1998. Telefunken was an automotive electronics pioneer with an early success in electronic ignition chips that made way into Volkswagen cars back in 1980.

The release of SAM DA1 series marks a remarkable opportunity as well as a crafty challenge for Atmel in the twilight worlds of MCU and automotive electronics. Tom Hackenberg, a senior analyst at IHS, calls the phenomenon ‘SoC on wheels.’

Hackenberg says that the automotive industry consumed approximately a third of all MCUs shipped in 2013. However, now there is an SoC on the road, the brain behind the connected car, and it commands a deeper understanding of the AEC-Q100 standard for automotive quality and ISO 26262 certification for car’s functional safety.

Atmel’s AvantCar touchscreen demo at the CES 2015

Atmel’s AvantCar touchscreen demo at the CES 2015

The integration of touch controller into SAM DA1 chips can be an important value proposition for the car OEMs who are burning midnight oil to develop cool infotainment platforms for their newer models. Next, while AEC Q100 Grade 2 qualification is a prominent part of the SAM DA1, Atmel might have to consider augmenting the ISO 26262 certification for functional safety, a vital requirement in ADAS and other connected car features.


Majeed Ahmad is author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

 

The Microcosm of IoT and connected cars in Formula 1 (Part 2)

…Continued from The Microcosm of IoT in Formula 1 (Part 1)

The typical F1 racing car embodies the sophisticated engineering — designed to win and only but win. The racing platform itself (both team, driver, and car) executes every deductive decision vetted against one pillar called “performance.”

Here’s the quantified car and driver. At 1.5 gigabytes of data wirelessly transmitted per connected car during a race, the ECU (electronic control unit) generates 2-4 megabytes per second of data from the F1 cars’ 120+ various sensors, which also include the drivers’ heartbeat and vitals.  Now let’s add the upgraded network fiber deployed across each race of the year set forth to ensure every turn and tunnel can stream and broadcast this telemetry and data.

Source: ESPN Formula 1 News

Source: ESPN Formula 1 News Computers, Software, and BI [Visualization and Data]

These embedded systems comprise of technology not limited to neither automotive nor Formula 1; embedded systems are used in the aero industry, marine, medical, emergency, industrial, and in the larger home entertainment industry. Therefore, advanced technology, little by little take place in the devices that we use every day. There are many useful products that are used in the industry — even though they first surfaced — as an application in F1 racing [the proven, moving lab].

F1 electronic devices used may be generally regarded in groups [using embedded systems] by the following:

Steering Wheel Display, Interface Unit, Create a Message, Electronic Control, Telemetry, Speed, Interface Unit, EV, Regenerative Power, Ignition Coil, Management System, Access to Pitstop, Power Source, Gryro Stabilizer, Humidty, Triggering Device, Acceleration, Rainy Lights, Air Resistance, Linear Movement, Angular positions, Lambda probe, Liquid pressure, Tire pressure, Temperature, Torque, Signaling, Server, Computer, Display Data (BI), Software

igure 4: Steering Wheel of Sauber F1 Source - nph / Dieter Mathis/picture-alliance/dpa/AP Images

Source – nph / Dieter Mathis/picture-alliance/dpa/AP Images

Here is an example Formula 1 steering wheel. It’s the embedded electronic enchilada, serving information [resulting from actuators and sensors] to a driver [on a need to know basis]. The driver coincides his race style and plan [tire management, performance plan, passing maneuvers, aggressive tactic] to every bit of data and resulted in a formatted display. These are literally at his fingers.

What are some of the F1 connected car implications?

Drivers in Formula 1 have access to functionality through their race platforms, which helps improve speed and increase passing opportunities. The DRS (Drag Reduction System) helps control and manage moveable rear wing. For a driver, in conjunction with Pirelli tires and KERS, it has proven successful in its pursuit of increasing overtaking which is all good for the fan base and competitive sport. The DRS moves an aerodynamic wing on a Formula 1 race car. When activated via the driver’s steering wheel, the DRS system alters the wing profile shape and direction, greatly reducing the drag on the wing by minimizing down force [flattening of the wing and reduce drag by 23%.]. Well, now coupled with the reduction in drag, this enables faster acceleration and a higher top speed while also changes variably the driving characteristics and style for over-taking. These are called driver and protocol adjustable body works.

How it works? Like all movable components of an F1 pure breed, the system relies on hydraulic lines tied to embedded control units, and actuators to control the flap. Managed by a cluster of servo valves manufactured by Moog, the Moog valves are interfaced via an electronic unit receiving a secure signal from the cockpit. Of course, this all happens under certain circumstances. When two or more cars pass over timing loops in the surface of the track, if a following car is measured at less than one second behind a leading car it will be sent a secure signal [encrypted then transmitted via RF] that will allow its driver to deploy the car’s active rear wing. Since the timing loops will be sited after corners, drivers will only be able to deploy the active rear wing as a car goes down a specific straight paths in many tracks.  In essence, the modern day Formula 1 car is a connected platform dynamically enabled to produce a stronger driver, appealing more to both driver performance and fan engagement.

Moveable aerodynamic components are nothing new. But still, for an Airbus A320 or even a modern UAV or fighter jet, there is a huge amount of space to work in. On a grand prix car, it’s quite different. This is also achieved in a very hyper fast, mobile, and logistically drained environment of Formula 1, where performance, equipment, and configuration are a demanded at all times. Next we’ll summarize how this relates to the broader connected car concept…

F1 showcases the finer elements of connected cars, making it possible

Just discussed, cars in general are going to become literally the larger mobile device. They will be connected to all sorts of use-cases and applications. Most importantly, we are the drivers, and we will become connected drivers. Both driver and connected car will become more seamless.

The next phase where smart mobility is going to change how we do and behave after we before or after we reach our destination. In Wired Magazine’s column named Forget the Internet of Things: Here Comes the ‘Internet of Cars’, Thilo Koslowski discusses the improvements and why connected cars are inevitably near. Thilo, a leading expert on the evolution of the automotive industry and the connected vehicle says, ““Connected vehicles” are cars that access, consume, create, enrich, direct, and share digital information between businesses, people, organizations, infrastructures, and things. Those ‘things’ include other vehicles, which is where the Internet of Things becomes the Internet of Cars.”

Yes, for the connected car, there still exist a number of technology challenges and legislative issues to build out a successful broader impact. Like Formula 1, we attribute many of its tech surfacing into main stream markets [previously discussed in part 1]. This next automotive revolution stems on current and related industry trends such as the convergence of digital lifestyles, the emergence of new mobility solutions, demographic shifts, and the rise of smartphones and the mobile internet.Thilo further claims “As these vehicles become increasingly connected, they become self-aware, contextual, and eventually, autonomous. Those of you reading this will probably experience self-driving cars in your lifetime — though maybe not all three of its evolutionary phases: from automated to autonomous to unmanned.”

connected-sensors-microcontrollers-atmel-iot-new-services

Actually, a consumer shift is happening. Consumers now expect to access relevant information ranging from geo location, integration of social data, way points, destination, sites of interest, recommendations, ones digital foot print integrated into the “connected car” experience. The driver will become connected with all the various other touch points in his/her digital life. Moreover, this will happen wherever they go including in the automobile. Thilo even goes to as far as claiming, “At the same time, these technologies are making new mobility solutions – such as peer-to-peer car sharing – more widespread and attractive. This is especially important since vehicle ownership in urban areas is expensive and consumers, especially younger ones, don’t show the same desire for vehicle ownership as older generations do.

To be successful, connected vehicles will draw on the leading technologies in sensors, displays, on-board and off-board computing, in-vehicle operating systems, wireless and in-vehicle data communication, machine learning, analytics, speech recognition, and content management. (That’s just to name a few.) “

All together, the build out of the connected car, [aspects proven in F1], contributes considerable business benefits and opportunities:

  •  Lowered emissions & extended utility of EVs — remote Battery swap stations, cars as (Internet as a service), peer to peer car sharing, cars with payment capabilities, subscription of energy, vehicles as power plants back to the grid, KERS, and other alternative fuel savings displaced with electrical motors and emerging consumer conscience accountability to clean energy
  • New entertainment options — countless integration opportunities with mobile (M2M and IoT) ecosystem of value added connected Apps and mobile services (i.e. Uber disrupted an old traditional market)
  • New marketing and commerce experiences — countless use-cases in increasing the engagement and point of arrival offerings
  • Reduced accident rates — albeit found in crash avoidance systems, location based services, driver monitoring, emergency response automation, early warning automation, telemetry to lower insurance cost, or advanced assisted driving
  • Increased productivity — gains achieved via efficiencies/time management towards more sustainable commutes
  • Improved traffic flow — efficient system merging various datasets to advance navigation to minimize and balance capacity or re-route traffic

Sensors-connected-IoT-Car

Personalization-connected-driver Like all technology, old ideas will progress, evolve to newer platforms to bring new functionality that can adapt to the latest popular ecosystem [simply being mobile & connected]. Connected cars will expand automotive business models augmenting new services and products to many industries — retail, financial services, media, IT, and consumer electronics. The traditional automotive business model can be significantly transformed for the betterment of the consumer experience. Today, emphasis is placed much purely on the  output, sale, and maintenance of a vehicles.  Later on, once connected cars reach market maturity with wide adoption, companies will focus on the sum of business opportunities [value add chain ecosystem] leveraged from the connected vehicles and the connected driver.

Are you a product maestro or someone with domain expertise for your company seeking to improve processes or developing value added services to build IoT enabled products? Perhaps, you are in a vertical intended to accelerate business and customer satisfaction? With all this business creation stirring up, it’s quite clear the connected car platform will open new customer connected services or product enhanced offerings.

That all being said, we are already in this moment of the future with Formula 1. Connected cars will eventually come. It’s just a matter of time…

(Interested in reading more? Don’t forget to check out Part 1.)

f1-tech-garage-padock

The Microcosm of IoT and connected cars in Formula 1 (Part 1)

Aerodynamics has always been a primary factor in decision-making and competitiveness in motor sports. For a racer, understanding the car platforms racing characteristics helps tune a competitive racing plan, yielding the advantages and disadvantages to the competitive car. The racer delivers the maximum window of opportunity to gain advantage in a fierce duel [passing], managing wheel tactics, or sharpening telemetry to aggressive drive fitted to the contours of each unique track characteristics.

Figure 1 Source- Yas Marina Circuit Abu Dhabi

Source: Yas Marina Circuit Abu Dhabi

The cutting-edge, technology-showcase-of-sports scene found in Formula 1 has dubbed the apex-racing category for motor sports. Inside the renowned world of Formula 1, this motor sport generates worldwide acclaim and accolade for their engineering prowess and technical astute packaged into these aggressively fast-engineered machines. Smartly made machines — but dependent — not to mention keen athletic training and talents bestowed in these rare class of trim, zippy, and binocular vision drivers.

Figure 2- Source - Red Bull Racing Forum

Source: Red Bull Racing Forum

It’s really a wrestle between man and machine. Though, a racer learns early on not to wrestle with the machine, he loses time. Instead, it’s a careful calculative balance of split decisions and engineering, combined with whim. Cut slices toward the fractions of time — take on technology — trigger the right moments to enhance split second timing and on-demand performance. Accumulate these gains over the duration of the race. Enhance these car-passing opportunities with certain speed and handling enhancing technology.

Figure 2: Source - Red Bull Racing Forum

Source: Formula 1 Mclaren Racing

Looking across the grid, there is talent laden in all areas and discipline found across each team, coupled with engineers from all categories including aerodynamic specialist to embedded designers and systems engineers. Quite arguably, some even conjure the idea that the top performers in Formula 1 are overweighed by the countless engineering feats and advantage any team may have between each other. Ideally, it’s really a competitive game of the team’s engineering diligence and driver configuration cleverness that brings about the result of any race (70-80 laps) to the finish. Like in many sports these days, there’s technology all intertwined and designed to ensure maximum results and increase the capacity for performance, achieve the end goal.

In fact, drawn forth purely by engineering or design perspective, one can find parallels to how the Spitfire engines helped win the battle of Britain when the successor aspirating Rolls Royce dual supercharged engines had stronger performance at high altitudes as well as inclined accent and descent during the Battle of Britain where the air defense weighed the tipping point to the turnout of the war countering swarms of ME109s in this western theatre. In every aspect of Formula 1, there is a lot of computing involved. The computing casts are inter-dependent—serve different purposes—but also combined in a beautiful orchestration of “man-machine-driver-media-fans.”

On the one hand, there’s the horsepower required to compute different airspeed dynamics and telemetry over the car’s form, while on the other hand there are massive parallel computing used to analyze the streams of data transmitted by the cars in real time. No doubt, look no further, Formula 1 is thrives with tech and talent, ranging from electronics, electric motors, gas, passion, and atheletic know-how… Even to the point of real-time broadcast, there are the vast amounts of profiled data and video selectively transmitted to individual, teams, and media [airlifted via special 747s from race to race].

MCUs and MPUs help process, decide on game changing speed

Well, let’s fast forward through the world of the F-A-S-T and furious Formula 1. Not only in the motor racing sports, but automotive industry is captivating a growing share of embedded (electronic) devices encompassing a wide range of localized computing, sensors, actuators, and connected devices for telemetry. The sensors streamline real-time—in the case of Formula 1, data to the team’s pit crew garage—transmit to the computer/remote computer—which in turn is primarily based on the received data managed by mechanical or digital processes through actuators. In today’s market, more newly unveiled cars are moving closer to adopting electronic and connected capabilities; ranging from self parking, guidance sensors, auto radar, advance collision avoidance, hybrid powertrain (ERS), advance assisted drive, telemetry reporting, navigation, emergency, recharging, HUDs, brake by wire, skid control, safety, KERS, instant power assist systems, electric drive system, electronic shifters, air induction, turbo, ABS, etc… In fact, many of these are originally given birth in race engineering, evolved out from these pinnacle circuits to mainstream consumer application and vehicle platforms.

The concept of actuators and their influence in IoT nodes

In the embedded world, actuators are like sensors. An actuator is the mechanism, a control system that acts upon an environment. The control system can be simple, a fixed mechanical or electronic system, software-based (e.g. a 3D printer driver, robot control system, security system, electric [EV] motors, manufacturing line automation, medical linear applications), a human, or any other input. Now, let’s think of them in the language of Industrial Internet or Internet of Things — actuators can be digital — labeled as presence sensors, augmented HMI sensors, or filter reality sensors measuring certain keynotes to the external world (accelerometers, magnetometers, gravimeters, gyroscope, tilt, environment, force, thermal, chemical, gases, flow, gravimeter, etc). The computer has become an essential part of the modern car, which certainly makes a huge improvement, but it also requires trained personnel for their service. Of course, this is all coming along now with the next era of the connected car as things move closer to this reality. Let’s consider how we got there: historically to cars today to cars tomorrow — where could we possibly go?

Can the typical family car be perceived as a transformative vehicle platform?

It’s all driving this direction. Very soon, the connected car may very well be the most advance platform for any household.  The connected car is a highly efficient vehicle platform, connected to the grid and cloud, while also acting as an energy generating platform, as discussed by James O’Brien. “An industry standard for cars will do the same for autos as the USB cable has done for the computer world,” claims Jake Sigal, CEO at Livio, a company acquired by Ford Motors to help position the automobile platform to facilitate the connected car. Even now, there is much anticipation and support from Formula 1 drivers voicing their support for the connected car. Formula 1 drivers Nico Rosberg, Giedo van der Garde, Timo Glock and Jérôme d’Ambrosio offer their support for connected car technologies. They call it eCall and eco-driving. This common camaraderie demands maturation of this automotive trajectory supports alignment of safe, efficient and connected mobility.

Formula One drivers voice support for the connected car

Source: FIA Region @Vimeo Formula One drivers voice support for the connected car

Automotive computing is different. The embedded systems themselves must be adequately protected from extreme vibrations, energy, dust, heat, water, ice, and moisture (all types). Hence, they are truly different inheriting environments that are not even close to the typical personal computer. Embedded computing devices built into the cars must be technologically advanced at high levels and tough standards. Still there are more sophisticated ways to use embedded devices in the car. This sophistication is most evident in the design and construction of racing cars, most notably witnessed in Formula 1

(Continued in Part 2)

Smart car tech shifts IoT boundaries

For the automotive industry, the emergence of the rapidly evolving Internet of Things (IoT) constitutes a disruptive and transformative environment.

According to ABI Research and practice director Dominique Bonte, this trend is characterized primarily by value chain and business model upheaval, as well as a ‘collaborate or die’ ecosystem friction reality prompting it to redefine and reinvent itself in order to capitalize on the huge opportunities in the new IoT economy.

“The absorption of the automotive industry in the wider IoT is driven by new connected car use cases such as EVs as a mobile grid and vehicles used as delivery locations,” he explained.

“As this IoT revolution unfolds, automotive innovation and value creation will be shifting to the boundaries with other verticals such as home automation, smart grids, smart cities, healthcare and retail.”

Indeed, vehicle-to-Infrastructure (V2I) and Vehicle-to-Retail (V2R) are projected to be the dominant segments with respectively 459 and 406 million vehicles featuring smart car IoT applications by 2030, followed by V2H (Vehicle-to-Home) and V2P (Vehicle-to-Person) with 163 and 239 million vehicles respectively. Meanwhile, Vehicle-to-Grid (V2G) services will be offered on 50 million vehicles in 2030.

“However, in order to fully unlock the automotive IoT potential it will be critical to address a wide range of barriers including security, safety, regulation, lack of cross industry standards, widely varying industry dynamics and lifecycles and limited initial addressable market sizes,” Bonte added.