Tag Archives: Embedded-Design-Interview

1:1 Interview with Mel Li (Part 1)

In 2013 there were 100 Maker Faires held around the world with nearly 530,000 people in attendance. Among the events, there are players and exhibitors who showcase their creation to the spectators. Many young techies, savvy tinkers, and even academic researchers are turning to tinkering. According to Makezine, there are over 40 million people who are classified as being part of this broader creative class. Among this creative class, there lies a blend of creative professionals. They are estimated at nearly 40 million people, all who create for a living, and are involved in a variety of fields from engineering to biotech to education to small business. We are witnessing the rise of the creative class – the Maker Movement.

Among this creative class, there are also some Makers who love the blend of creativity, fantasy, and technology in fantasy role-play (also known as “cosplay”). They live and advocate artistry, practice creative fiction, or conduct game play by integrating experimental R&D into their lives. The integration of new technologies into the Maker movement allows people to bring their creative or artistic endeavors from fantasy into reality. Below we interview Mel Li, a Biomedical Engineer and Maker, whose work showcases an illuminating wearable technology. She participates in an entertainment technology fantasy role-play coupled with imagination and real-world integration, all made possible by the advent of embedded mediated digital technologies. Mel Li is a Biomedical Engineer by day and creative Maker by night. Today, this dual-role is adopted by many graduates and researchers who are technologists, passionately wielding technology for artistic expression, research and advancement.

TV: What is your opinion of the Maker Movement?

ML: For me, technology should not only be about practicality, but should also be creative and aspirational. It really exists in the mind and the imagination. Without creative visions from artists, writers, and engineers, we have goals to work towards. I think this is the root cause for a lot of transformative ideas and technologies. For example, Neal Stephenson’s cyberpunk classic “Snowcrash” predicted a lot of the Internet and I think many sci fi aficionados can see that current technologies from Google Glass to Amazon quadcopters and self-driving cars owes a lot to creative influences. These advances are a motivation to learn more about the world around us… I think we’re living in a really exciting time. I want to be part of something important that makes a difference. “Making things” makes me feel resourceful; it makes me feel I can do things I did not know I could do.

Also, I am excited to be part of this super trend for wearables. There is a lot of “Maker Movement” in all of us. We have been making for countless centuries. Making is an attitude that isn’t the sole domain of the young, or the old. Today, the tools to build complex or innovative things are simply faster and more available to everyone. Using Arduino, I quickly realized I too could make creatively. It gives me a great feeling that I am a participant in this Maker Movement. A lot of modern technology is now simplified and easily broadcast. On Twitter, I can interact with famous and inventive people; I can tweet with Obama or communicate with the next contemporary cool inventor. 3D printing is not for small one time use or useless parts or useless created things. Technology in general is used to making things in a mass produced way. It’s all changing now. 3D printing is helping make highly personalized products. People make their wedding rings. Doctors and researchers make prosthetics and print unique designs for custom tailored patients. Even still, there are many more uses. Tech is becoming super personal and highly personal, it’s digitally produced, it can be tailored to fit your imagination.

Figure 2: Photo by Benny Lee

Photo by Benny Lee

Most importantly, you can express who you are to people by building their own things. These are the strong pillars, and can cause a resurgence of manufacturing. Prototyping phases are condensed. The risks have been removed with new instruments such as crowd-funding. You no longer have to think about high volume or highly invested factory models. It’s through crowd-funding where Kickstarter tied to R&D can make a lot of sense. Going to a hackerspaces and crowd-funded models to validate, get help, print out whatever is on your mind. Early phases can now be easily proofed and transparently evolved through open-source troubleshooting. The Maker Movement is important. It’s really the first time in digital technology where tools or ideas have become economically feasible and available.

Figure 3: Photo by Mike Vickers

Photo by Mike Vickers


TV: Can you talk a little about Arduino and AVR MCUs?

ML: Arduino is one of the best things that happened to Makers, artists and engineers. Arduino is such a great revolution. A lot of people close to me or in my lab research groups use it for personal or professional projects. For example, some have used it for persistence of vision (POV) bike wheel displays, others for piloting hobby drone helicopters for surveying hiking conditions. These machines are now our friends and part of the cast. Whether among friends or professional coworkers/collaborators, Arduino and Embedded design have become part of our discussion and rapport with one another.

This world had become much easier for entry and the barriers to learning are now far removed – allowing more and more people from other core disciplines to get more tightly involved with their ideas. It’s a deeply knitted thread into everything in our lives. In fact, this sort of technology is serving as an invaluable tool. It’s sort of an extension to our imaginations and thoughts.  We are now able to not only have a discussion on the topics or matter at hand, but we can actually work together to help demonstrate and move great ideas from concept to reality. For me, it would have been too taxing and exhausting if I had to program in basic using exotic and difficult learning languages which are really expensive to do without the helpfulness, openness and availability of open hardware, open source, Arduino IDE and Atmel. These things that use to be beyond our limits have now come closer to “easy.”  Now the more important question becomes what we are working towards.

Figure 4: Photo by Mike Vickers

Photo by Mike Vickers


TV:  How does imagination and creativity meet technology? 

ML: Imagination and creativity are important for seeing beyond what exists out there and instead looking forward to what could be. Technology is about obtaining the depth to make these dreams real. A lot of my spare time is in the depth of the research or personal build. Technical depth helps pull away the curtain of mystery and make things transparent. It unfolds the creativity with logic and fuses them together with others.

TV:  What is the pursuit?

ML: I like to blend fantasy with reality. I mean simply thinking about it, lots of the tech and smart electronics we use today were once unexplained or unimaginative a decade or so ago. The fantasy world helps unleash abstract concepts in my drawings and paintings. Now there is an availability of technology and lowered barriers for entry such as what you find with the ease of Arduino and forgiving Atmel AVR chips. It’s his ease-of-use which help provide a concrete bridge to formulating my day-to-day work. This technology provides a platform to someone like me, who is immersed into creative/research academia; a canvas to exhibit my work.

Figure 5: Photo by Mike Vickers

Photo by Mike Vickers

I have always been a big fan of the fantasy and game world. It’s a relief, pleasure, and balance, being also a research scientist trying to figure out and solve difficult problems. The electronic cosplay collection as a maker help stretch the imagination. The Maker work helps extend my parameters of creativity, lift any preconceived barriers and make thoughts elevate more open. With my graduate research work, the Arduino inspired fluorescent LED costume helps personify the notion of science and tech, where these two disciplines of study are typically not necessary known to be social. When you are in a gaming cosplay, it truly is really easy to share and quickly attract interest. Gaining interest in your project portfolio to present your maker work is not difficult.  When you are at an open convention, people will come up and talk to you… The best feeling is being able to share what you have created.

TV:  What is accelerating the Maker Movement?

ML: Arduino has been so fantastic, with cost and ease of use its primary valued traits. These platforms help me on the weekend. I really like to learn and use motor control and so I have used these controls in a bunch of projects. Time-wise, it’s practical and some of my projects usually took a weekend or week at most.  I used to play a lot of computer games. This led me to building my own computers then I tore things apart to break things and build them back again. It made me feel very knowledgeable and empowered. This whole Maker Movement which is being accelerated more by the Internet, Adafruit, Etsy, Kickstarter, Indiegogo, Sparkfun, Seeed Studio, crowd-sourcing, crowd-funding, etc…  To me, it’s really doing things in a more sharply defined or distinct ways and building hardware. Making is an attitude that isn’t the sole domain of just the hacker, young techie, or the old adapting to what’s new. Creativity with raw materials, the introduction of digital tools, social sharing, communities, and thriving or developing potential market for wearables or IoT apply to today’s Maker Movement.

Together with the social sharing and instant accessibility, the Movement has become more active. We can find this in academia or even in a social community gathering where people get together with a shared common belief.  For example, Makers and hackers are some of the friends I have at Georgia Tech. We find new platforms to constantly test and stretch our imaginations. Some are building robots together and finding similar pursuits in chasing their imagination. This helps in the exchange of creativity and innovation but also with fostering interesting new ideas. Of course, this all happens when you build something that has a personal expression and share something very meaningful or passionate towards …  Technology has become very personalized.

Figure 1: Inspirational work from Anouk Wipprecht's fashion designs

Inspirational work from Anouk Wipprecht’s fashion designs

TV: How would you characterize yourself?

ML: Well for me, I’m at heart two coalesced into one. I’m a Biomedical Engineer and a Maker. I’ve recently completed a PhD program at Georgia Tech and I’m currently a postdoc over at the University of Washington. At the same time, I really enjoy personal projects. I love to research and create – expand the creative envelope and engage in pursuit of the imagination. This makes me a true Maker at heart. I enjoy pursuing my projects with wearable electronics and I created DIY laboratory automation. Through my creative cosplay and imaginations, I am very passionate around wearable technology as an expression. I have created wearable electronics, which are powered by the Atmel microcontroller and Arduino boards. For example, during this year’s Maker Faire (Bay Area), I showcased some items from my DIY laboratory automation projects which demonstrates how the Atmel MCU and Arduino can be used for low-cost, multi-channel optics control and fluorescence visualization.

Part Two of the interview with Mel Li can be read here.

1:1 Interview with Mel Li (Part 2)

(Continued from Part 1 …)

TV:  Tell me about the Lab on a Chip?

ML: The lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single chip of only millimeters to a few square centimeters in size. LOCs deal with the handling of extremely small fluid volumes down to less than pico liters. The notion of the “Lab-on-a-Chip” generally indicates the scaling of single or multiple lab processes down to chip-format, primarily dedicated to the integration of the total sequence of lab processes to perform chemical analysis.  My previous work examined the design and validation of a LOC for screening blood samples to determine optimal personalized drugs and their respective dosages for specific patients to prevent heart attacks. A lot of those techniques were first inspired by the fact that tools requiring the examination, characterization and integration of the sophisticated hardware controls are made available.

TV: Describe your post doctorate work and bio medical engineering?

ML: I worked on research projects that are helping us to better understand and detect early heart disease.  My current research work involves measurements for fluid migration over surfaces then discussing those applications for medical diagnostics. My works also involve motor control for fluorescence microscopy for applications in life sciences.  This work involves spectrum study of fluorescent DNA or proteins. This graduate work is related to the building and diagnostic device which can measure at microscale, pinpoint dosage of drugs to show visibility of early signs of heart disease. The medical application revolves around a low cost infectious disease as well as looking at tuberculosis and malaria. The idea is to provide a breakthrough in what typically required extensive cost, lots of lab work and long examination to be replaced with a low cost and easily administered solution. The application is very similar to taking a sample of mucous or saliva; this is sort of like a pregnancy test. We collaborate with large industrial partners such as GE Healthcare and hopefully we’ll be able to produce a commercially viable product in time.

TV:  How are AVR Microcontrollers being used with the Arduino in your cosplay costume

ML: I use the ATmega168 (via the development and application of the Arduino Duemilanove board) for this costume. The microcontroller is used to control the color, power and timing of the lights on the costume through shift registers. The cosplay costume using this controller chip is the one pictured here.

3ddesign-origin-exoskeloton-avr-inside-microcontrollers-3dprinted.png

I also use the ATmega328 (via the Arduino Uno/Uno R3 board) for the lab projects previously described.  Specific tasks for the controller include driving the position and timing of a servo motor and/or linear actuator, as well as switching power on and off from an AC wall socket to a high powered, wide spectrum LED light source. Additionally, it was also used in a costume where it again controlled color, power and timing of LED’s, but these were driven using normal (non shift register) PWM signal controls. My costume using this controller chip is pictured here:

Figure 6: Photos by Mike Vickers

Figure 6: Photos by Mike Vickers

exoskeloton-with-atmel-avr-inside-microcontrollers-3dprinted

This is the ATmega32uF (via the Arduino Micro board) for my current project (in progress) that will be used for motor control.

 

3dmodel-Designed-Solidworks-AVR-Atmel-origin-lay-exoskeloton-avr-inside-microcontrollers-3dprinted

* Mel’s costume is an original design inspired by a wide range of cyberpunk/fantasy artists including Masumune Shirow, Eric Canete, Joe Benitez and various modern gaming concept art. According to Mel, the process was a lot of fun and took approximately three months of on-and-off planning and building. The assembly is made from over 60 parts designed in Solidworks and sewn/cut/glued/laser-cut/heat-formed using various techniques. The costume includes color changing LEDs on the spine and front that are controlled by Arduino boards with Atmel AVR and ARM microcontrollers and onboard RGB controllers (respectively). The costume is powered by 16 AA batteries, 1 LiPo rechargeable battery, two 2032 coin cells and one 9-volt battery. In total, there are more than 70 LED’s on the entire costume and over 60 parts.

** Part one of this interview can be read here.

 

1:1 Interview with Marcus Schappi of MicroView

The Atmel-powered MicroView – which made its first official Kickstarter appearance last week – has already raised nearly $547,925 from over 6,666 enthusiastic backers.

Essentially, the MicroView is a chip-sized platform with a built-in OLED (64×48) display that allows Makers to see what the Atmel-based board is “thinking” without having to link with a PC.

 The device, designed by the Geek Ammo crew, is built around Atmel’s versatile ATmega328P microcontroller (MCU).

Recently, Atmel’s Tom Vu sat down with MicroView creator Marcus Schappi to discuss the project’s Kickstarter success.

Tom Vu: What are the origins of Project MicroView? How did it all start? Given your success with Ninja Blocks, what motivated you to do this project?

Marcus Shappi: This is the first time you can see what your Arduino is thinking! We’ve always tried to make learning electronics easier. We started by creating an Arduino with LEDs on each output pin so you know when the pins are being turned on. We next built Ninja Blocks, an Internet of Things (IoT) system that removes the impediments of needing to know electronics, networking and programming. To cap things off, we asked ourselves how can we make this even easier, and [then] came the MicroView.  We’ve put an incredible amount of time into the MicroView Arduino Library, with only a couple of lines of code makers can dispay images, text, widgets, graphs and gauges. MicroView embeds the power of an Arduino or dev board, onto the size of a chip.

TV: What is Geek Ammo core philosophy and mission?

MS: At Geek Ammo we want to make awesome open source gear (hardware) for Makers and Geeks.

Marcus Shappi and Geek Ammo - Kickstarter Funded Project

TV: Obviously, this compliments the Arduino environment. Why does achieving the smallest form factor matter during the phases of development and engineering process?

MS: When Makers are building projects, often size is a consideration (the MicroView is a tiny 26mm x 26mm x 16mm); this is especially so with wearable and airborne projects where size and weight are a constraint. When holding a MicroView in your hand you’ll instantly notice that it has standard spacing (bread board compatible), but not only that it’s also DIP compatible, making it easy to include in projects with just a couple of headers. Meanwhile, users can also appreciate the smooth ergonomic surfaces on the underside which make it easy to remove the MicroView from a prototyping breadboard.

TV: What can you do with a packaged OLED on microcontroller? Can you provide some use-cases where the display is useful during the Maker Build or Prototype process toward achieving MVP?

MicroView with OLED making ease of use on a nicely fitted Breadboard-AVR

MS: The OLED on the microcontroller really makes it easy to quickly understand what’s going on inside the Arduino. As part of our Arduino library we’ve included code to easily render text, widgets, sprites, graphs and gauges. This is great for displaying information on what your project is doing. Every project has some level of debugging and the MicroView makes this so easy. This could be in a wearables project or even robotics.

TV: Tell us about why education is important in getting newbie younger and Maker-aspiring audience more involved? How are you helping facilitate this early start?

MS: Yes, naturally education is important for the next generation of Makers, and the MicroView helps to make electronics more accessible. By virtue of having the built in OLED display we’re able to show tutorials on how to use the hardware, and that’s cool, but what is really special is the ability to interact with a project and get live feedback on the OLED display. MicroView can help teach you electronics and Arduino. The MicroView comes preflashed with built-in tutorials that are displayed on its OLED screen.

TV: What versions of development platforms can be used with MicroView?

MS: The MicroView support Arduino today.MicroView from Kickstarter Funded Project  Demonstrating Agile Development with OLED Interface

TV: Can MicroView be used inside some connected items? IoT? Wearables? Drones? Robots? Please describe some imaginative projects?

MS: Yup, it sure can. Anywhere where you can use an Arduino you can use a MicroView. We’ve used it to display weather and [other] information. We’ve [also] used it as the brains of a robot, showing the motor status and even a wearable project that displays a heart beat.

TV: What does can MicroView do better for an inspiring engineer or ideate builder looking to help sculpt the world of IoT?

MS: The MicroView make it easier to get started, you can very quickly see what’s happening. This is especially important for IoT projects where you traditionally don’t have one.

MicroView and Sample Applications demonstrating use on Robot

TV: Why doesn’t your project consider multiple rewards or tiers for crowd funding patrons? What you are getting if basic funding goals are met? Stretch goals?

MS: Reward tiers for direct multiples are not possible due to Kickstarter’s terms and conditions. We have a number of tiers starting from $45, with the most popular Tier being the “Learning Kit Tier” which includes parts to create 11 different circuits. We’ve decided to not do stretch goals as they tend to add risk to a project. We want to ship the MicroView on time!

TV: Why is SparkFun your choice in distribution and build?

MS: SparkFun are the experts at manufacturing products like the MicroView. Previously, they’ve manufactured and shipped a Kickstarter project called Makey Makey. We know they can do this, and do it well! Beyond Kickstarter, SparkFun has, by far, the best distribution in the industry.

MicroView makes it easier to get started

TV: Does this statement embody “I am a software company or hardware company” matter in the age of IoT where innovation lies beyond the core?

MS: Didn’t the venture capitalist, Brad Feld say “hardware is just software wrapped in plastic?” So yeah, in 2014 hardware is software and vice versa.

TV: How do you see and why you chose the AVR (MegaAVR)?

MS: We primarily chose AVR for it’s compatibility with Arduino. We’ve seen other projects try to port Arduino to other chipsets, and whilst on the whole they’ve done a good job, there always seems to be some bugs. We don’t want any bugs!

TV: What do you especially like about AVR MCU in your projects?

MS: When you’re designing projects, it’s critical that you have: parts availability, a part that has been field tested (tried and true), and for the type of projects we’re doing power consumption is also a big priority.

TV: What is the differentiator of the Library? Tell me about the enhanced frames per second (FPS) performance in the OLED? Why? What could be a potential use or engineering feat of this speed?

MS: The Arduino library our amazing EE JP Liew has created makes it super easy to do things that would normally be difficult on a microcontroller, like showing on the display, images, text, graphs and gauges. With JP’s library, creating a widget is only a line of code, and updating it another line. When we first started the project we used a 3rd party library, but we found that the performance was sluggish. JP rewrote the library and was able to get 200FPS (more than needed for the human eye). However, this is important on an AVR because you’re doing all your work in a single thread, so if the uC gets bogged down trying to render the screen, it can’t do other things like data-acquisition from a sensor like an accelerometer.

TV: What is the advantage of a combined small form factor OLED display for creative building and prototyping?

MS: You no longer need to connect your Arduino to a computer to see what it’s thinking. No more cryptic LED blink sequences to working what part of the code your Arduino is running.

TV: In the spirit of open source, when can I access the 3D CAD design files, PCB source files, and project’s open source code?

MS:  We’ll make the source public as soon as the Kickstarter funding period is over.

 

Interview: Jean-Noël talks Ootsidebox

Jean-Noël says projected capacity is the primary principle behind his Atmel-powered Ootsidebox, with an electric field projected in front of the existing touch surface affected by movements of the hand. Simply put, it is possible to calculate 3D coordinates and recognize certain gestures by measuring the perturbations of an oscillator caused by the movement of the user’s fingers (or an object) at several centimeters from the control surface.

Recently, Atmel’s Tom Vu had the opportunity to discuss the Ootsidebox with product inventor Jean Noel Lefebvre. 

Tom Vu:

What is the basic history of Ootsidebox?

Jean Noel: I kicked off this project 6 years ago and have worked on it full time since March 2013. Most of the parts used to construct  Ootsidebox are actually off-the-shelf electronics.

ootsodebox1

More specifically, I used the Atmel AT90USB1286 microcontroller (MCU) to power the device. Currently, I am exploring the possibility of meshing the popular Unity 3D gaming Engine with Ootsidebox. Combining a well known gaming engine will help us tease out more latent, long-term potential for the project, while simultaneously expanding the boundaries of game play with touchless or hybrid touch/touchless technology.

TV: How does Ootsidebox differ from other touchless and gesture sensor solutions?

JN: First of all, there is nothing at the center. For the microchip solution, you need a center electrode with two layers integrated within the body. In contrast, Ootsidebox is designed to be platform and device agnostic. In fact, the incasing can be modeled to fit around existing technologies and devices. Take, for example, example, the Android or iPad. The idea that you can simply wrap this touchless interface around existing devices and products opens new possibilities while enhancing use-cases for existing devices.

ootsidebox2

With this external fitting, much like an accessory, one can quickly enable their devices to be touchless, with gestures executed from within 10cm (set to double very soon) at maximum in front of a small screen. The device can be used in many different scenarios. For example, say you are in the kitchen cooking with greasy hands filled with sauce. The Ootsidebox can be set to seamlessly interact with various kitchen appliances – without the user ever having to touch knobs, buttons, glass, dials or sliders. Instead, activating/adjusting appliances can be performed via simple gestures (left to right or circular motions). Of course, there are many additional applications that can benefit from a touchless interface, ranging from home consumer device, gaming, health or even industrial uses.

TV:  Can you tell me more about the product design?  Is there any particular reason you chose Atmel AVR?

JN: The design is very simple, using only well known “stock components” found on any distributor or reseller site. The more complex part may be found in the 14bits DAC in SPI. Most of the components are “old school” logical chips such as 4000 family (my best friends for a long time in electronics). As for the microcontroller, I didn’t need high performance uC, so 8 bits were enough. The idea is to prepare Ootsidebox for mainstream adoption via a strategy of simplicity, a philosophy which fits well with Makers and the open source community. In terms of selecting the appropriate uC, I was careful to precisely balance price and performance. I also took into consideration various factors such as the large AVR community, availability of open source libs and the quality of the support and tools from the chip manufacturer. The mindset, reputation and philosophy of the brand (Atmel and Arduino) helped steer my uC choice. In fact, startups today are very closely tied to Maker Movement, reflecting Arduino and Atmel. That’s why I’m very confident when choosing Atmel, because Atmel and the Arduino community really support the Maker Movement today.

TV: How does Ootsidebox differ from other platforms on the market?

JN: It’s really a control device that computes touchless gestures versus touching and manipulating. Most of us are quite familiar with the ongoing touch revolution, as we use the very same interface interacting with smartphones and tablets on a daily basis. In addition, there are already commercially viable products such as Android devices equipped with sensor hubs that are designed to process gestural movement of the hand.

ootsidebox3

Ootsidebox differs on many levels, as the device is meant to be an add-on or fitting to an already existing device. Easy modification will encourage HMI enhancements for existing products or emerging devices. Remember, a consumer/user does not have to be married to just one product line from a major manufacturer. With Ootsidebox, you can control the devices without touching; move up, down, side-to-side, rotational, and even emulating the click of a button. Perhaps most importantly, the touchless interface will undoubtedly inspire future design roadmaps. For example, the touchless form factor is perfect for industrial and medical use. Just imagine a dentist needing to activate or handle various devices during treatment when messy hands are not necessarily ideal.

TV: What is the future of Ootsidebox? Do you plan on making it open source?

JN: Yes, there are plans to launch a campaign on Kickstarter or Indiegogo to attract more involvement in the development and use of this touchless sensor solution. The platform and innovative slope for additional development is limitless. We plan on releasing Ootsidebox as open source / open hardware, complete with specs for mechanical design. Crowdsourcing will help spur additional innovation, while allowing the platform to accommodate a wider degree of functionality. 

TV: How do Hackerspaces influence your work?

JN: A few years ago, disruptive products and ideas were conceived in garages. Today, the very same process takes place in Hackerspaces, where creativity thrives and technical skills abound. By designing projects in Hackerspaces, Makers and engineers are fully connected with a worldwide network of creative people boasting different backgrounds. This synergy significantly accelerates the innovation process.

TV:  What is your personal experience with AVR microcontrollers (MCUs) and Arduino boards?

JN: I was using other brands before I discovered the benefits of AVR uC during my discussions about Ootsidebox with my friends at Elektor Labs.

ootsidebox4

Also during my stay at Noisebridge Hackerspace, Mitch Altman was using AVR Arduino to teach electronics for newbies (I really love what’s happening there). My first experience with the Arduino environment was with Teensy++ 2.0, based on the AT90USB1286 MCU. This Atmel AVR microcontroller is the one I used for my last prototype of the Ootsidebox tablet accessory, which will be launched soon on Kickstarter or Indiegogo. We are also working on a smaller project with Elektor Labs. Essentially, it’s a “3D Pad” built in the form of a shield for Arduino.

TV: Are touchless gestures the future of user interfaces?

JN: Touchless gestures are a part of the natural evolution of the more traditional user interface. It’s a way to provide a more natural and intuitive user experience, which is somewhat of a growing requirement due to the proliferation of complex equipment in our everyday life. Of course, touchless gesture interaction is also more natural. In the future, with the help of Ootsidebox technology, product designers and Makers will not create electronic platforms to “manipulate” or “interact” with devices, but rather, for individuals to directly “communicate” with them instead.

Really, people expect them to be as smart as living entities. I learned that during various discussions with scientists about the project. In the brain, “communicating” vs. “manipulating” simply does not invoke the same connections pathways. Clearly, touchless and gesture UI are paving the way to a very fascinating evolution of consumer electronics in the near future. That being said, I see touchless user interfaces complimenting, rather than replacing, multi-touch, much the same way the mouse didn’t replace a keyboard.

Clearly, this kind of technology can help save lives, while reducing nosocomial risk in healthcare environments. It may also allows drivers to stay more attentive to the road when navigating with gesture-based infotainment. Personally, I’m dreaming of disruptive aesthetic designs in the field of high-tech consumer electronics. I can’t wait to see what a guy like Philippe Starck will be able to create. As I noted earlier, this project is 100% open and we invite everyone to participate on Twitter. Just post your questions and suggestions here: @OOTSIDEBOX, while including the hashtag #AtmelBlog. I’ll answer you personally. You can also check us out here on Facebook

Video: ARM interviews Atmel’s Ingar Fredriksen



Earlier this week, Atmel kicked off Embedded World 2014 by expanding its low-power ARM Cortex M0+-based MCU portfolio with three new families: the SAM D21, D10 and D11. The trio of entry-level, low-power MCUs are packed with a number of high-end features including Atmel’s Event System, SERCOM module, peripheral touch controller and a full-speed USB interface.

During the show, ARM’s Andy Frame interviewed Atmel’s MCU Marketing Director Ingar Fredriksen about the company’s ARM-based SAM D family of products.

“The original SAM D20 lineup has been a tremendous success for Atmel,” Fredriksen told Frame. “We see a lot of opportunities for the series over the next five years.”

Commenting on the new additions to the SAM D series, Fredriksen highlighted Atmel’s integrated peripheral touch controller (PTC) which supports buttons, sliders, wheels and proximity with up to 256 channels. This configuration allows developers to migrate from a two-chip (one MCU + one touch) solution to a one-chip platform.

Indeed, the PTC supports mutual and self capacitive touch, while offering optimized sensitivity and noise tolerance as well as self-calibration. Simply put, the PTC eliminates the need for external components and minimizes CPU overhead. More specifically, implementing one button takes one channel, while wheels and sliders occupy three.

As we’ve previously discussed on Bits & Pieces, Atmel’s SAM D portfolio is architected beyond the core, leveraging over two decades of MCU experience to create unique, connected peripherals that are easy-to-use, while providing scalability and performance.

To help accelerate the design process and eliminate the need for additional components, Atmel’s new SAM D lineup integrates additional functionality, including full-speed crystal-less USB, DMA, I2S, timers/counters for control applications, along with several other new features. Atmel’s SAM D devices are also code- and pin-compatible, making it easy for designers to migrate up and down the family.

Interested in learning more? You can check out Atmel’s ARM-based solutions here and “Think Beyond the Core,” a free white paper [PDF] about Atmel’s scalable SAM D lineup here.

Video: ARM interviews Atmel’s Jacko Wilbrink

Earlier today, the ARM crew interviewed Atmel exec Jacko Wilbrink on the sidelines of Embedded World 2014 in Nuremberg, Germany.

Wilbrink discussed Atmel’s popular ARM-based SAMA5D3 microprocessor, confirming that the MPU has been a “tremendous success for Atmel.”

Wilbrink also said Atmel will continue to offer scalable ARM-based MPUs, with an eye on introducing more dual-core implementations in the future. 

Last, but certainly not least, Wilbrink showcased Newark’s (element14) new $79 Atmel SAMA5D3 Xplained evaluation kit – a low-cost, fast prototyping and evaluation platform for microprocessor-based design.

The board, which is powered by Atmel’s SAMA5D3 ARM Cortex-A5 processor-based MPU, is packed with a rich set of ready-to-use connectivity and storage peripherals, along with Arduino shield-compatible expansion headers for easy customization. In addition, the platform is a perfect target for headless Android projects, while a Linux distribution and software package facilitates rapid software development.

As we’ve previously discussed on Bits & Pieces, the SAMA5D3 series is ideal for wearable computing and mobile applications where low power and a small footprint are critical. Key SAMA5D3 Xplained features include:

  • Fully documented and readily available Cortex-A5 based MPU solution
  • Rich set of peripherals, specifically on connectivity
  • USB power (no need for power adaptor)
  • Flexibility – Arduino-compatible connectors, enabling the user to leverage the extensive Arduino shields ecosystem
  • Open Source hardware – All design files available; easy to reuse in customer projects
Software package with drivers and examples for bare metal developers
  • Qt developers kit and Linux distribution free of charge

The new SAMA5D3 Xplained evaluation kit – priced at $79 – is slated to ship in mid-March 2014 from Farnell element14 in Europe, Newark element14 in North America and element14 in APAC. You can pre-register for the board here.

interview-icon-mcuwireless-atmel-magnus

1:1 Interview with Magnus Pedersen of Atmel

TV: What do you do? How are you contributing to the realization and maturation of the Internet of Things (IoT)?

Atmel-MCU-Wireless-Magnus-Pedersen

Magnus Pedersen with the Philips Hue (a connected IoT enabled smart device). The Philips Hue Wireless Light Bulb promises full control of its functions over Wi-Fi, including per-light brightness and color settings, remote operation and geofencing capabilities. In addition, Philips includes a powerful GUI-driven app to custom tune lighting in nearly any environment.

MP:  I am currently working on new ultra low power wireless devices and systems compliant with the IEEE 802.15.4 standard, which supports wireless applications such as ZigBee and IPv6/6LoWPAN. Providing standards based reference designs and implementation helps our customers bring IoT devices quickly to the market.

TV: What products do you see becoming the potential glue for Internet of Things embedded designs?

MP: IoT in my mind is all about connectivity and there is a major trend towards wireless. There are many standards competing for designs in the IoT space, but I believe low power solutions like ZigBee, Bluetooth Smart and Wi-Fi will grab the lion share of the market for IoT devices.

TV: What are some of the challenges in building out MCU Wireless and Wireless/RF enabled devices to support enterprise initiatives?

MP: The primary challenge is the lack of standards for the upper layers, and to some extent, lack of infrastructure and gateways to gather data from the IoT devices – bringing the data back into the enterprise servers for analysis.

TV: What’s your favorite MCU wireless device and why?

MP: My current favorite is Atmel’s ultra low power family of wireless microcontrollers. It’s single die design, offering a high level of integration. Plus, it is designed with ultra low power consumption in mind. The ATmegaRFR2 family is quickly grabbing market share in some relatively new markets like wireless lighting control. Major players are putting a lot of efforts into ZigBee Light Link compliant systems these days.

AT256RFR2-EK

AT256RFR2-EK

TV: Can you think of a reference design and various other solution sets that have helped a customer realize his or her vision of embedded architecture and design? Specifically, one that meets all design and BOM requirements – while also exceeding quality and maximizing in B2B as well as customer end to end satisfaction?

MP: Atmel has been active in the ZigBee community for many years. We have certified ZigBee Stacks and referenced implementations for firmware and hardware that we are sharing with our customers. We have a very open policy to share source code, and we are even sharing our hardware design files for our customers to use, either as is, or modified to customer needs. This way, customers can leverage years of R&D that have already been invested in the reference designs – all while moving efficiently through evaluation, prototyping and actual products ready for mass-production.

TV: Is there any advice you can offer to our readers who are forced to make tough decisions when it comes to schedule and embedded projects? For designers, architects and manufacturing managers?

MP: Learn from the mistakes of others. You do not have time to make them all yourself! Make sure you engage with suppliers that have been in the game for a while and are willing to share past experiences in terms of hardware, communication stacks and reference designs. Relying on and working with an experienced supplier will save you from some of the traditional pitfalls and challenges in wireless designs.

TV: There are so many standards related to connectivity. I can imagine the early web and many early technology paradigms in similar nascent scenarios. Which protocol and stack do you endorse as the communicator for IoT embedded designs? Does it matter?

MP: I think you’re right – the IoT is still in it’s infancy and there are still quite a few standards competing for the same applications. In the ultra low power domain IPv6/6LoWPAN is promoted by the IPSO Alliance and the ZigBee solutions promoted by the ZigBee Alliance is now fairly mature and ready for prime time. A couple of years ago the smart energy domain was very interesting, but the fastest growth today is within wireless lighting control and home automation. Do a search for “Philips Hue” and you can see some of my favorite applications right now.

TV: IoT refers to connecting literally everything to the Internet. Do you agree with this sentiment? How soon do you think this will become a reality?

MP: Yes – I do agree. And that means we are talking about a set of solutions ranging from handsets and tablets to even smaller embedded and highly specialized devices with years of battery lifetime. We’re even seeing battery-less devices being driven by energy harvesting techniques.

TV: Is the Internet of Things going to be the biggest leverage point for IT as well as valued added chain to many industries? If so, what are some of the business challenges?

MP: IoT represents huge opportunities for existing industries and it will also represent great opportunities for startups to create new business. The latest forecast provided by Gartner indicates that there will be up to 30 billion connected devices by 2020, resulting in  $1.9 trillion in global economic value-add through sales into diverse end markets. Those are big numbers!

TV: Will competing communication standards get into the way of IoT emergence? Does lack of agreement equate to limited economies of scale? Is there a risk associated to choosing the wrong MCU Wireless device?

MP:  I do not think competing standards will create any issues. Some standards will fit better than others, and especially in consumer applications growth will be driven primarily by consumer demand, rather than standardization bodies or organizations. There is an obvious risk for the product vendors tied to this – selecting the wrong standard might prohibit growth and represent a fatal decision for both startups and even established companies.

TV: IoT is obviously about more than just connecting your toaster. What are some some examples for big industries and markets where IoT can bring added value and revenue? Explain at least to a B2B customer point of view for a Fortune 500?

MP: IoT is about making everyday life easier for everyone. It’s about the introduction of the smart home, HVAC and lighting solutions coming online. It’s about alarm systems and doorlocks and cameras – everything coming online. It is also a story about a generation of people being always online, almost to the point of being addicted to internet-access. I recently saw an update to the Maslow’s hierarchy of needs indicating that WiFi access is now becoming the most important requirement, perhaps even more important than food and water. I thought it was funny, but yes, there is probably some sense of truth in this as well – at least for some people.

Figure: Maslow 2.0

Figure: Maslow 2.0

 

It might not fair to give one example of products or companies, but if you look at communities like Kickstarter and search for IoT projects, there are an overwhelming number of ideas and projects.

TV: Is the IoT hype going to mature and actually become mainstream with an unfolding of emergent products that redefine the shape for products and services offered to a company? If so, tell me about some of the challenges and what can be done to make this transition easier?

MP: The IoT hype is going to mature and there will be new businesses in data collection, data transfer and data storage. New businesses will also be build around data analysis of  smartphones and tablet applications.

TV: Have you heard of Amara’s law?  We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run. What are the potentials in the short/long term for Internet of Things as we move forward?

MP: Devices that communicate with each other enable new opportunities. This can be a device(s) within a limited geography or area, while in the longer term these devices will be connected to the cloud and can then be accessed from anywhere.

TV: Describe some of the technology partnerships and reference designs that can act as mentors and education models for engineering teams seeking to revamp/evolve their products into the world of connectivity.

MP: Atmel is involved with numerous partners in the IoT domain. We’ve enjoyed long-term partnerships with standardization bodies such as IETF and IEEE, as well as the ZigBee Alliance. Atmel is also teaming up with marketing organizations such as the IPSO Alliance and The Connected Lighting Alliance. As a silicon vendor, there is also a need for additional resources at the application level and even hardware reference designs. Over the past few years, we’ve teamed with companies like MeshNetics in the ZigBee domain (their IP was acquired by Atmel in 2008), and Seninode for their embedded IPv6/6LoWPAN solutions. (Sensinode was recently acquired by ARM). A general goal is to provide complete reference designs for both hardware and firmware in order speed the design process on the customer side, and it is also the general idea that these designs should be available as open source.

TV: What are some of the challenges associated with extending the typical product to a connected product? What are the design constraints and challenges that can be learned from one another?

MP: Atmel recently conducted an IoT survey with our key customers, revealing few technical challenges. The evolving standards enable new businesses, but it also broadens the competition.

TV: What sort of recommendations and technical advice do you offer to help core engineering teams and architects build highly connective products that can be designed and produced in the  highest quality and lowest BOM available?


MP:
Being responsible for the low power wireless product line in Atmel, we’re bringing out standard compliant wireless solutions including RF transceivers, wireless microcontrollers, communication stack and profiles, and even certified hardware reference designs to kickstart customer projects and bring them quickly to market.

TV: What are you currently working on and most excited about?


MP:
As a marketeer for a large microcontroller and touch company, I have the opportunity to engage with products and solutions that are going to be introduced in the near future. Products that don’t exist yet – I find that part very exciting

TV: Are there any people or books that have inspired you lately?

MP: Steve Jobs. It is really amazing how he created killer products and applications, even thought we didn’t know that we wanted or needed them. The iMac, iPod, iPhone, iPad, and the Apps-store… Steve changed the world of handsets from Nokia/Blackberry dominance to the handsets as we know them today. I have also watched the speech he gave for Stanford University graduates back in 2005 many times. Steve Jobs urged the students to pursue their dreams and see the opportunities in life’s setbacks — including death itself. I think this was a really great speech in the sense that he asks us to think about what we really want to achieve in life, knowing that death is the only destiny we all share – no one has ever escaped it.

TV: How can we establish and negotiate technological priorities? In a world of limited bandwidth, the growth in connectivity will challenge our current network capacity to cope with data. We need a better way of understanding which services should be prioritized. For example, how can we make sure vital medical data or pluggable Internet of Things devices aren’t slowed by streaming and IoT enabled loose end points?

MP: I wouldn’t be too worried about this. Network capacity will continue to scale and various security mechanisms will deal with priorities and separate the vital networks and applications from the less critical ones.

TV: How can we take a long-term perspective on services and objects? We currently design for beginnings – getting people connected and tied into a system. How can we make sure people end relationships with service providers as easily? As more big-ticket items become connected (cars, fridges etc) and are sold on to new owners and users, this becomes increasingly important.

MP: As “things” becomes connected more and more consumers will make use of the new applications and systems. Ease of use and the willingness to change will be the keys. The consumers are a challenging set of customers as they will not accept systems and application not stable enough or easy to use. Companies offering such products will simply fail.

TV: How can we balance aspirations for the IoT with the reality of what it will be able to deliver? There are strong tensions between the aspirations and our vision of a technological future and the pragmatics of our everyday lives.

MP: I do not agree to the statement that there are strong tensions. We see enormous activity from entrepreneurs in the IoT space these days, and yet I think that this is just the very early beginning of a new mega-trend in the industry, as well as applications and services being provided to the consumers. Some of these ideas will fly and become great products, others will fail. And again, I think the consumers will be the judges when it becomes to the decision of what will be a success story and what will fail.

TV: Who represents who? Who stands up for, educates, represents and lobbies for people using the IoT or connected products? Is this the role of people centered designers? As a product extraordinaire, how can you help companies bring Internet of Things devices or connected smart products to life?

MP: That’s a really good question! With the indications I already mentioned from the analysts, (predicting a $1.9 trillion market in 2020), there are many groups and communities scratching their heads trying to figure out how to get their piece of this big pie. Some of the drive will come from the industry promoting their technology, but there will also be IoT solutions being demanded and pushed for by the consumers themselves.

TV: Who are the people using it? How do we define the communities and circles that use each product and their relationship to each other?

MP: As with most new products and solutions, quite a number of initiatives will be rolled out in high end products first. Some solutions are maybe more the limited audience of tech-freaks, but IoT is rapidly becoming a reality in everyones lives.

TV: What can we learn about IoT in everyday business communication, product design and product emergence?

MP: IoT opens up a huge space of new solutions, systems and products. We will move into a world of smarter devices, where the devices themselves are capable of communicating with other IoT devices. Some of these devices will even make decisions to interact with and control other devices without any input from human beings. Just look at the car-industry. High end cars are now able to park without a driver, they can position themselves in the lane, keep distance from the vehicle in front, and we’re about to get a fleet of cars that are able to communicate with each other, making decisions on our behalf. Some cars are also equipped with systems for automated emergency calls and even report the exact position it is calling from. These are examples of systems already available. Given the fact that the devices are connected they can also be reprogrammed to change behavior without any need for major hardware updates. This offers flexibility in design and helps keeps the platform up to date before a new hardware product design cycle needs to be kicked-off.

TV: How does rapid prototyping help drive new product developments and how does it fit with a people-centric or customer-centric methodology? How can government nurture efficiencies or disruption? Is it their role to help adopt innovation for the end customer?

MP: Rapid prototyping enables shorter development cycles, but it can also be used to spin multiple prototypes quickly to test various options and product configurations. This way you can execute modifications and changes early in the development stage and avoid costly redesigns at a later stage. This might represent the difference between a project failure and a successful product. Personally, I think governments should play an active role in innovation, making sure startups and even established companies have an environment where they can achieve sustainable growth. In the past we’ve even seen governments actively funding IoT projects during economic downturns, like what US government did back in 2009 – feeding hundreds of billion of dollars to the industry in order to create new jobs. Some of these funds went into smart energy projects rolling out smart meters as we have already seen in California.

TV: How can we track “Things” and what will this tell us about their use?

MP: There are a number of ways to track “things,” ranging from traditional GPS technology to various methods of range measurements and triangulation algorithms. This provides useful information about the device, or its owner, and can be used in many ways. I already mentioned automated emergency calls reporting a vehicle’s position, but the number of applications benefiting from location (positioning) services is really unlimited. From the retail industry for example, we see an increased demand for such services in connection to targeted commercials for each and every customer, as well as monitoring customer behavior in a shopping mall to maximize sales.

TV: What are the new interfaces and dashboards that will help people to interact with the IoT? How important will the distinction be between devices equipped with a screen (touch, etc) and those without? How does this play a role in the latest features of Atmel’s microcontrollers and microprocessors?

MP: User interfaces are extremely important. These interfaces have quickly evolved from traditional button and screens, to the touchscreen technology as we know it today. Touch screens and their related applications and user interfaces has proven very easy and intuitive to use, so it is quickly becoming the de-facto standard. This is obviously also the reason why Atmel as a company has invested heavily in touch technology over the last few years, ranging from capacitive buttons, sliders and wheels, to small and large touch screens. As more and more products utilize this technology, capacitive touch technology is rapidly becoming a standard building block in all Atmel microcontrollers.

TV: Who should ask where potential pain is in the business innovation belt? Is it the designer or business manager, or both?  Do we create value and value chains that reward creators or just end user customers? How can the designer and product creativity map to microcontroller functionality and capabilities?

MP: I think this needs to be reviewed by all parties involved. Innovation is an interactive process involving everyone from the designer to the consumer. Good products will also create value for everyone involved in the process – from the design kickoff until there is a finished product in the hands of the consumer. Selecting Atmel as a design partner ensures access to a family of microcontrollers capable of scaling in terms of resources and peripherals such as wireless connectivity and touch enabled user interfaces. It is a very important strategy for Atmel to be positively aligned with the customer when defining roadmaps and the next generation of microcontrollers. The only way we can make sure we have the right technology available at the right time is to define our future roadmaps in close cooperation with our customers.