Tag Archives: Elliptic Curve Digital Signature Algorithm

The CryptoCape is the BeagleBone’s first dedicated security daughterboard


The CryptoCape extends the hardware cryptographic abilities of the BeagleBone Black.


With the insecurity of connected devices called into question time and time again, wouldn’t it be nice to take comfort in knowing that your latest IoT gadget was secure? A facet in which many Makers may overlook, Josh Datko recently sought out to find a better way to safeguard those designs, all without hindering the DIY spirit. The result? The CrytpoCape — which initially debuted on SparkFun last year — is a dedicated security daughterboard for the BeagleBone that easily adds encryption and authentication options to a project.

Generally speaking, cryptography offers a solution to a wide-range of problems such as authentication, confidentiality, integrity and non-repudiation, according to Datko. SparkFun notes that the $60 Atmel powered cape adds specialized ICs that perform various cryptographic operations, amplifying a critical hardware security layer to various BeagleBone projects.

The CyrptoCape is packed with hardware, including 256k EEPROM with a defaulted I2C address (plus write protection), a real-time clock (RTC) module, a Trusted Platform Module (TPM) for RSA encryption/decryption, an AES-128 encrypted EEPROM, an ATSHA204 CrypoAuthentication chip that performs SHA-256 and HMAC-25 and an Atmel ATECC108 tasked with the Elliptic Curve Digital Signature Algorithm (ECDSA).

“You will also find an Atmel ATmega328P microcontroller and a large prototyping area available on the board. The ATmega is loaded with the Arduino Pro Mini 3.3V bootloader and has broken out most of the signals to surrounding pads,” its SparkFun page reveals.

Beyond that, each easy-to-use CryptoCape comes with pre-soldered headers making this board ready to be attached to your BeagleBone right out of the box. The only additional item a Maker will need to get the CryptoCape fully-functional is a CR1225 coin-cell battery.

Interested? You can check out the product’s official SparkFun page here. Meanwhile, those looking to learn more should also pick up a copy of Datko’s book entitled “BeagleBone for Secret Agents.” The third chapter of the resource is devoted to the CryptoCape where Makers will learn how to combine a fingerprint sensor, the on-board ATmega328P, and the crypto chips to make a biometric authentication system.

Atmel launches next-generation CryptoAuthentication device


Atmel becomes first to ship ultra-secure crypto element enabling smart, connected and secure systems.


Just announced, the Atmel ATECC508A is the first device to integrate ECDH (Elliptic Curve Diffie–Hellman) security protocol — an ultra-secure method to provide key agreement for encryption/decryption, along with ECDSA (Elliptic Curve Digital Signature Algorithm) sign-verify authentication — for the Internet of Things (IoT) market including home automation, industrial networking, accessory and consumable authentication, medical and mobile, among many others.

Atmel_September2014_pg2

Atmel’s ATECC508A is the second integrated circuit (IC) in the CryptoAuthentication portfolio with advanced Elliptic Curve Cryptography (ECC) capabilities. With built-in ECDH and ECDSA, this device is ideal for the rapidly growing IoT market by easily providing confidentiality, data integrity and authentication in systems with MCU or MPUs running encryption/decryption algorithms (such as AES) in software. Similar to all Atmel CryptoAuthentication products, the new ATECC508A employs ultra-secure hardware-based cryptographic key storage and cryptographic countermeasures which are more secure than software-based key storage.

This next-generation CryptoAuthentication device is compatible with any microcontroller or microprocessor on the market today including Atmel | SMART and Atmel AVR MCUs and MPUs. As with all CryptoAuthentication devices, the ATECC508A delivers extremely low-power consumption, requires only a single general purpose I/O over a wide voltage range, and available in a tiny form factor, making it ideal for a variety of applications that require longer battery life and flexible form factors.

“As a leader in security, Atmel is committed to delivering innovative secure solutions to the billions of devices to be connected in the IoT market,” explained Rob Valiton, SVP and GM of Atmel’s Automotive, Aerospace and Memory Business Units. “Atmel’s newest CryptoAuthentication IC is the first of its kind to apply hardware-based key storage to provide the full complement of security capabilities, specifically confidentiality, data integrity and authentication. We are excited to continue bringing ultra-secure crypto element solutions to a wide range of applications including IoT, wireless, consumer, medical, industrial, and automotive, among others.”

CryptoSecurityALT_HPBanner_980x352_Final_v_2

Key security features of the ATECC508A include:

  • Optimized key storage and authentication
  • ECDH operation using stored private key
  • ECDSA (elliptic-curve digital signature algorithm) sign-verify
  • Support for X.509 certificate formats
  • 256-bit SHA/HMAC hardware engine
  • Multilevel RNG using FIPS SP 800-90A DRBG
  • Guaranteed 72-bit unique ID
  • I2C and single-wire interfaces
  • 2 to 5.5V operation, 150-nA standby current
  • 10.5-kbit EEPROM for secret and private keys
  • High-Endurance Monotonic Counters
  • UDFN, SOIC, and 3-lead contact packages

In the wake of recent incidents, it is becoming increasingly clear that embedded system insecurity impacts everyone and every company. The effects of insecurity may not only be personal, such as theft of sensitive financial and medical data, but a bit more profound on the corporate level. Products can be cloned, software copied, systems tampered with and spied on, and many other things that can lead to revenue loss, increased liability, and diminished brand equity.

Data security is directly linked to how exposed the cryptographic key is to being accessed by unintended parties including hackers and cyber-criminals. The best solution to keeping the “secret key secret” is to lock it in protected hardware devices. That is exactly what this latest iteration of security devices have, are and will continue to do. They are an inexpensive, easy, and ultra-secure way to protect firmware, software, and hardware products from cloning, counterfeiting, hacking, and other malicious threats.

Interested in learning more? Discover the latest in hardware-based security here. Meanwhile, you may also want to browse through recent articles on the topic, including “Is the Internet of Things just a toy?,” “Greetings from Digitopia,” “What’s ahead this year for digital insecurity?,” and “Don’t be an ID-IoT.

Digital anonymity: The ultimate luxury item

Data is quickly becoming the currency of the digital society, of which we are all now citizens. Let’s call that “Digitopia.”

Digitopia123 copy

In Digitopia, companies and governments just can’t get enough data. There is real data obsession, which is directly leading to an unprecedented loss of privacy. And, that has been going on for a long time — certainly since 9/11. Now a backlash is underway with increasing signs of a groundswell of people wanting their privacy back. This privacy movement is about digital anonymity. It is real, and particularly acute in Europe. However, the extremely powerful forces of governments and corporations will fight the desire for personal privacy revanchism at every turn. What seems likely is that those with financial means (i.e. 1%-ers) will be at the forefront of demanding and retrieving privacy and anonymity; subsequently, anonymity could easily become the new luxury item. Ironically, digital invisibility could be the highest form of status.

Anon

Let’s explore what is creating the growing demand for a return to some anonymity. The main driver is the collective realization of just how vulnerable we all are to data breaches and snooping — thanks to Edward Snowden’s NSA revelations, Russian Cyber-Vor hacker gangs stealing passwords, Unit 61318 of the People’s Liberation Army creating all kinds of infrastructure, commercial and military mischief, the Syrian Electronic Army conducting cyber attacks, Anonymous, Heatbleed, Shellshock, Target and Home Depot credit card number breaches among countless other instances of real digital danger.

What all this means is that everyone is a potential victim, and that is the big collective “ah-ha” moment for digital security. (Maybe it’s more of an “oh-no!” moment?) As illustrated by the chart below, the magnitude, types and sheer number of recent attacks should make anyone feel a sense of unease about their own digital exposure. Why is this dangerous to everyone? Well, because data now literally translates into money. And I literally mean literally. Here’s why…

Breach 1

Bitcoin Exposes the Dirty Little Secret About Money 

Bitcoin is a great starting point because it’s the poster child of the data = money equation. Bitcoin currency is nothing more than authenticated data, and completely disposes any pretense of money being physical. It is this ephemeral-by-design nature of Bitcoin that, in fact, exposes the dirty little secret about all money, which is that without gold, silver or other tangible backing, dollars, the Euro, Renmimbi, Yen, Won, Franc, Pound, Kroner, Ruble and everything else is nothing but data. Money is a manmade concept — really just an idea.

How this works can best be described by putting it into cryptographic engineering terms. Governments are the “issuing certification authority” of money. Each country or monetary union (e.g. EU) with a currency of their own is literally an “issuer.” All roads lead back to the issuer’s central bank via a type of authentication process to prove that the transaction is based upon the faith and credit of the issuer.

Banks are the links on that authentication/certification chain back that leads back to the issuer. Each link on the chain (or each bank) is subject to strict rules (i.e. laws) and audits established by the issuer about exactly how to deal with the issuer, with other banks in the system, with the currencies created by other issues (i.e. other countries), with customers, and how to account for transactions. Audits, laws, and rules are therefore an authentication process. Consumers’ bank accounts and credit cards are the end-client systems. Those end-client systems are linked back through the chain of banks via the authentication process (rules, etc.) to the issuer of the money. That linkage is what creates the monetary system.

Bitcoin was built precisely and purposefully upon cryptographic authentication and certification. It is cryptography and nothing more. There is no central issuing authority and it remains peer-to-peer on purpose. Bitcoin bypasses banks precisely so that no overseer can control the value (i.e. create inflation and deflation at their political whim). This also preserves anonymity.

The bottom line is that the modern banking system has been based upon “fiat money” since the Nixon Administration abandoned the gold standard. The Latin word “fiat” means “arbitrary agreement” and that is what money is: an arbitrary agreement that numbers in a ledger have some type of value and can act as a medium of exchange. Note that physical money (paper and coins) is only an extremely small fraction of the world’s money supply. The bulk of the world’s money is comprised of nothing more than accounting entries in the ledgers of the world’s banking system.

See?  Money = Data. Everything else is window dressing to make it appear more than that (e.g. marble columned bank buildings, Fort Knox, Treasury agents with sunglasses and guns, engraved bonds, armored cars, multi-colored paper currency, coins, etc.).

So, if money equals data, then thieves will not rob banks as often; however, those who can will raid data bases instead, despite what Willie Sutton said. Data bases are where the money is now.

1573355_the-illuminati_jpeg890495712403ec5fef85b53b0a65a1ab

By now, the problem should be obvious to anyone who is paying attention — data of any kind is vulnerable to attack by a wide variety of antagonists from hacker groups and cyber-criminals to electronic armies, techno-vandals and other unscrupulous organizations and people. The reason is simple. Yes, you guessed it: It is because data = money. To make it worse, because of the web of interconnections between people, companies, things, institutions and everything else, everyone and everything digital is exposed.

Big Data. Little Freedom.

The 800-pound gorillas of Digitopia are without a doubt governments. Governments mandate that all kinds of data be presented to them at their whim. Tax returns, national health insurance applications, VA and student loan applications, and other things loaded with very sensitive personal data are routinely demanded and handed over. Individuals and corporations cannot refuse to provide data to the government if they want the monopolized “services” governments provide (or to stay out of jail). And, that is just the open side of the governmental data collection machine.

The surreptitious, snooping side is even larger and involves clandestine scanning of personal conversations, emails, and many other things. However, there is another, non-governmental component to data gathering (I will not use the term “private sector” because it is way too ironic). Companies are now becoming very sophisticated at mining data and tracking people, and getting more so every day. This is the notion of “big data,” and it is getting bigger and bigger all the time.

The Economist recently articulated how advertisers are tracking people to a degree once reserved for fiction. (Think George Orwell’s 1984.) Thousands of firms are now invisibly gathering intelligence. Consumers are being profiled with skills far exceeding that of FBI profilers. When consumers view a website, advertisers compete via a hidden bidding process to show them targeted ads based on the individual’s profile. These ads are extremely well focused due to intensive analytics and extensive data collection. These auctions take milliseconds and the ads are displayed when the website loads. We have all seen these ads targeted at us by now. This brave new advertising world is a sort of a cross between Mad Men and Minority Report with an Orwellian script.

The Personalization Conundrum

There is a certain seductiveness associated with consumer targeting. It is the notion of personalization. People tend to like having a certain level of personalized targeting. It makes sense to have things that you like presented to you without any effort on your part. It is sort of an electronic personal shopping experience. Most people don’t seem to mind the risk of having their preferences and habits collected and used by those they don’t even know. Consumers are complicit and habituated to revealing a great deal about themselves.  Millennials have grown up in a world where the notion of privacy is more of a quaint anachronism from days gone by. But, that is all likely to change as more people get hurt.

Volunteering information is one thing, but much of the content around our digital selves is being collected automatically and used for things we don’t have any idea about. People are increasingly buying products that track their activities, location, physical condition, purchases and other things. Cars are already storing data about our driving habits and downloading that to other parties without the need for consent. So, the question is becoming at point does the risk of sharing too much information outweigh the convenience? It is likely that point has already been reached, if you ask me at least.

The Need for a Digital Switzerland

With the unholy trinity of governmental data gathering, corporate targeting, and cyber-criminality, the need for personal data security should be more than obvious. Yet, the ability to become secure is not something that individuals will be able to make happen on their own. Data collection systems are not accessible, and they are not modifiable by people without PhDs in computer science.

With privacy being compromised every time one views a webpage, uses a credit card, pays taxes, applies for a loan, goes to the doctor, drives on a toll way, buys insurance, gets into a car, or does a collection of other things, it becomes nearly impossible to preserve privacy. The central point here is that privacy is becoming scarce, and scarcity creates value. So, we could be on the verge of privacy and anonymity becoming a valuable commodity that people will pay for. A privacy industry will arise. Think of a digital Pinkerton’s.

It is likely that those who can afford digital anonymity will be the first to take measures to regain it. To paraphrase a concept from a famous American financial radio show host, privacy could replace the BMW as the modern status symbol. The top income earners who want to protect themselves and their companies will be looking for a type of digital Switzerland.

swiss army

Until now a modicum of privacy had been attainable from careful titling and sequestering of assets (i.e. numbered bank accounts, trusts, shell corporations, etc.). That is not enough anymore. The U.S. Patriot Act, European Cy­bercrime Convention, and EU rules on data retention are the first stirrings concerning a return to the right to anonymity. These acts will apply pressure to the very governmental agencies that are driving privacy away. Dripping irony…

Legal, investigational, and engineering assets will need to be brought to bear to provide privacy services. It will take a team of experts to find where the bits are buried and secure them. Privacy needs do not stop at people either. Engineers will have to get busy to secure things as well.

The Internet of Things

Everything said until this point about the loss of personal privacy also applies to the mini-machines that are proliferating in the environment and communicating with each other about all kinds of things. The notion of the Internet of Things (IoT) is fundamentally about autonomous data collection and communication and it is expected that tens of billions of dispersed objects will be involved in only a few years form now. These numerous and ubiquitous so-called things will typically sense data about their surroundings, and that includes sensing people and what those people are doing. Therefore, these things have to add security to keep personal information out of the hands of interlopers and to keep the data from being tampered with. This is called data integrity in cryptographic parlance.

What Can be Done?

To ensure that things are what they say they are, it is necessary to use authentication. Authentication, in a cryptographic sense, requires that a secret or private key be securely stored somewhere for use by a system. If that secret key is not secret then there is no such thing as security. That is a simple point but of paramount importance.

2014-Crypto-Security-at-our-Core-Atmel-Has-You-Covered

The most secure way to store a cryptographic key is in secure hardware that is designed to be untamperable and impervious to a range of attacks to get at it. Atmel has created a line of products called CryptoAuthentication precisely for this purpose.  Atmel CryptoAuthentication products — such as ATSHA204AATECC108A and ATAES132 — implement hardware-based key storage, which is much stronger then software based storage because of the defense mechanisms that only hardware can provide against attacks. Secure storage in hardware beats storage in software every time.

It is most likely that as we citizens of Digitopia continue to realize how dependent we are on data and how dependent those pieces of data are on real security, there will be a powerful move towards the strongest type of security that can be achieved. (Yes, I mean hardware.)

In the future, the most important question may even become, “Does your system have hardware key storage?” We should all be asking that already and avoiding those systems that do not. Cryptography is, as Edward Snowden has said, the “defense against the dark arts for the digital realm.”  We should all start to take cover.

HackADay talks CryptoCape

The CryptoCape – which recently made its debut on SparkFun – is a dedicated security daughterboard for the BeagleBone designed in collaboration with Cryptotronix’s Josh Datko, which features Atmel’s Trusted Platform Module and SHA-256 Authenticator.

12773-03a

HackADay’s Brian Benchoff was lucky enough to catch up with Josh and asked him to break down how the nifty device works.

“If you need to add security to your project or you want to learn more about embedded security the CryptoCape adds encryption and authentication options,” the Maker added.

As its webpage notes, the CryptoCape functions as the BeagleBone’s first dedicated security daughterboard. Known as a BeagleBone Cape, the device attaches to the expansion headers of the BeagleBone and “adds specialized ICs that perform various cryptographic operations which will allow you to add a hardware security layer to your BeagleBone project.”

12773-05a

Previously discussed on Bits & Pieces, the CyrptoCape is packed with hardware, including 256k EEPROM with a defaulted I2C address (plus write protection), a real-time clock (RTC) module, a trusted platform module (TPM) for RSA encryption/decryption, an AES-128 encrypted EEPROM, an Atmel ATSHA204 authentication chip that performs SHA-256 and HMAC-25 and an Atmel ATECC108 that performs the Elliptic Curve Digital Signature Algorithm (ECDSA).

The reasoning behind the developer’s choice to use the SHA-256 Authenticator? “It creates 256-bit keys that can be used in keyed Message Authentication Codes (MACs), or HMAC, to prove the authenticity of the device.” In addition, the authenticator allows the device to “implement an anti-counterfeiting system with the exchange of nonces and MACs between other embedded devices.”

If you are interested in boosting the security of your Maker project or learning more about the CryptoCape, you can head to the product’s official SparkFun page here.