Tag Archives: Electronica

Atmel and IoT and Crypto, oh my!

One of the companies that is best positioned to supply components into the Internet of Things (IoT) market is Atmel. For the time being most designs will be done using standard components, not doing massive integration on an SoC targeted at a specific market. The biggest issue in the early stage of market development will be working out what the customer wants and so the big premium will be on getting to market early and iterating fast, not premature cost optimization for a market that might not be big enough to support the design/NRE of a custom design.

Latest product in Atmel's SmartConnect family, the SAM W25 module

Here is Atmel’s latest product in the SmartConnect family, the SAM W25 module

Atmel has microcontrollers, literally over 500 different flavors and in two families, the AVR family and a broad selection of ARM microcontrollers ad processors. They have wireless connectivity. They have strong solutions in security.

Indeed last week at Electronica in Germany they announced the latest product in the SmartConnect family, the SAM W25 module. It is the industry’s first fully-integrated FCC-certified Wi-Fi module with a standalone MCU and hardware security from a single source. The module is tiny, not much larger than a penny. The module includes Atmel’s recently-announced 2.4GHz IEEE 802.11 b/g/n Wi-Fi WINC1500, along with an Atmel | SMART SAM D21 ARM Cortex M0+-based MCU and Atmel’s ATECC108A optimized CryptoAuthentication engine with ultra-secure hardware-based key storage for secure connectivity.

Atmel at Electronica 2014

Atmel at Electronica 2014

That last item is a key component for many IoT designs. Security is going to be a big thing and with so many well-publicized breaches of software security, the algorithms, and particularly the keys, are moving quickly into hardware. That component, the ATECC108A, provides state-of-the-art hardware security including a full turnkey Elliptic Curve Digital Signature Algorithm (ECDSA) engine using key sizes of 256 or 283 bits – appropriate for modern security environments without the long computation delay typical of software solutions. Access to the device is through a standard I²C Interface at speeds up to 1Mb/sec. It is compatible with standard Serial EEPROM I²C Interface specifications. Compared to software, the device is:

  • Higher performance (faster encryption)
  • Lower power
  • Much harder to compromise

Atmel has a new white paper out, Integrating the Internet of Things, Necessary Building Blocks for Broad Market Adoption. Depending on whose numbers you believe, there will be 50 billion IoT edge devices connected by 2020.

Edge nodes are becoming integrated into everyone’s life

As it says in the white paper:

On first inspection, the requirements of an IoT edge device appear to be much the same as any other microcontroller (MCU) based development project. You have one or more sensors that are read by an MCU, the data may then be processed locally prior to sending it off to another application or causing another event to occur such as turning on a motor. However, there are decisions to be made regarding how to communicate with these other applications. Wired, wireless, and power line communication (PLC) are the usual options. But, then you have to consider that many IoT devices are going to be battery powered, which means that their power consumption needs to be kept as low as possible to prolong battery life. The complexities deepen when you consider the security implications of a connected device as well. And that’s not just security of data being transferred, but also ensuring your device can’t be cloned and that it does not allow unauthorized applications to run on it.
IoT Design Requirements - Software / Development Tools Ecosystem

IoT design requirements: Software / development tools ecosystem

For almost any application, the building blocks for an IoT edge node are the same:

  • Embedded processing
  • Sensors
  • Connectivity
  • Security
  • And while not really a “building block,” ultra-low power for always-on applications

My view is that the biggest of these issues will be security. After all, even though Atmel has hundreds of different microcontrollers and microprocessors, there are plenty of other suppliers. Same goes for connectivity solutions. But strong cryptographhic solutions implemented in hardware are much less common.

The new IoT white paper is available for download here.

This post has been republished with permission from SemiWiki.com, where Paul McLellan is a featured blogger. It first appeared there on November 19, 2014.

Day 1: Atmel @ Electronica 2014

Day 1 of Electronica 2014 in Munich, Germany has drawn to a successful close. Surely enough, it didn’t take long before the Atmel booth — located in Hall A5, #542 — was jam-packed, hosting countless engineers, designers, partners and industry insiders throughout an exciting nine hours.

IMG_5081

IMG_5108

While at the booth, visitors had the opportunity to check out a plethora of our recently launched products like the new megaAVR family, the super low power Atmel | SMART SAM L21, the QTouch Safety Platform and our fourth generation LIN device, as well as an extensive lineup of interactive demos ranging from CryptoAuthentication to the futuristic AvantCar center console concept.

IMG_5056

img_5059

IMG_5037

IMG_5142

IMG_5097

In addition to an assortment of IoT solutions, Atmel’s AVR Hero Design Contest winner Pamungkas Sumasta was on hand showing off the latest rendition of the award-winning, all-in-one Phoenard platform — which is slated to hit Kickstarter later this week.

IMG_5111

Heading to Messe Münche later this week? Learn more about all the tech you can expect to see here. Meanwhile, stay tuned for more on Bits & Pieces for updates from the show floor, and be sure to follow along with all the real-time happenings on Twitter!

IMG_5085

Low power just got lower with the Atmel | SMART SAM L21

Well, low power just got lower. The Atmel team is excited to announce that it has reached a new low-power standard for its ARM Cortex-M0+ based MCUs with power consumption down to 40 µA/MHz in active mode and 200nA in sleep mode. In addition to ultra-low power, the new platform features full-speed USB host and device, Event System and Sleepwalking,12-bit analog, AES, capacitive touch sensing and much more.

IMG_5037

With billions of devices predicted for the Internet of Things (IoT) market by 2020, there is a need for lower power MCUs that will power these applications without adding load to utility grids or requiring frequent battery changes. Atmel’s latest Atmel | SMART platform is designed specifically for these applications, expanding battery life from years to decades.

Consuming just one-third the power of comparable products in the market today, the new low-power SAM L21 family is the first on the new platform expanding the Atmel | SMART 32-bit ARM-based products using Atmel’s proprietary picoPower technology.

While running the EEMBC CoreMark benchmark, Atmel’s SAM L21 family delivers ultra-low power running down to 40µA/MHz in active mode, consuming less than 900nA with full 32kB RAM retention and real-time clock and calendar, and 200nA in the deepest sleep mode. With rapid wake-up times, Event System, Sleepwalking and the innovative picoPower peripherals, the SAM L21 ultra-low power family is ideal for handheld and battery-operated devices in a variety of markets including IoT, consumer, industrial and portable medical applications.

Architectural innovations in the new platform enables low-power peripherals including timers, serial communications and capacitive touch sensing to remain powered and running while the rest of the system is in a lower power mode, further reducing power consumption for many always-on applications.

SMRA

The Atmel SAM L21 family has amazingly low current consumption ratings for both the active and sleep mode operation which will be a great benefit in targeting the growing battery-powered device market,” said Markus Levy, president and co-founder, EEMBC. “With billions of devices to be brought to market during the era of the Internet of Things, designers can utilize Atmel’s ultra-low power SAM L family to ensure an increased life in these battery-powered devices. To instantiate this power data from Atmel, I’m looking forward to seeing the results from this new platform running our newly established ULPBench, aimed at the ultra-low power microcontroller industry.”

“Atmel is committed to providing the industry’s lowest power technologies for the rapidly growing IoT market and beyond for battery-powered devices,” expained Reza Kazerounian, Atmel SVP and GM, MCU business unit. “Developers for IoT edge nodes are no longer just interested in expanding the life of a battery to one year, but are looking for technologies that will increase the life of a battery to a decade or longer. Doing just that, the new 32-bit MCU platform in the Atmel | SMART family integrating our proprietary picoPower technologies are the perfect MCUs for IoT edge nodes.”

Engineering samples of the SAM L21, along with development tools and datasheet will be available in February 2015. Meanwhile, the SAM L21 can be found all this week in Hall A5, Booth 542 at Electronica.

Introducing the next-generation of 8-bit megaAVR MCUs

Since its initial launch in 2002, megaAVR microcontrollers (MCUs) have become the go-to choice of Makers everywhere. Ranging from the uber-popular ATmega328 to ATmega32U4, the chips can be found at the heart of millions of gadgets and gizmos, including an entire lineup of Arduino boards, 3D printers like RepRap and MakerBot, and innovative DIY platforms such as littleBits, Bare Conductive and MaKey MaKey. Heck, they’ve even captured the hearts of celebrity creator Sir Mix-A-Lot!

avr_campaign_simplyavr_980x352

Designed for engineers of all levels from the professional developers to the Maker community, the 8-bit megaAVR MCUs are ideal for applications in a variety of markets — automotive, industrial, consumer and white goods.

Today, we are excited to announce the next generation of this incredibly-popular family, with the debut of new 8-bit megaAVR MCUs. Spanning from 4KB to 16KB Flash memory, the new devices provide next-generation enhancements including additional analog functionality and features for the latest low-power consumer, industrial, white goods and Internet of Things (IoT) applications.

IMG_5056

This expansion of megaAVR family will deliver all the benefits of previous generations including a simple, easy-to-use interface for a seamless upgrade and binary compatibility with existing 8-bit megaAVR MCUs.

“With over 20 years of MCU experience, we are proud to launch our third generation of 8-bit megaAVR MCUs to the market today—a family that has been highly recognized by a variety of communities from the professional designers using our Atmel Studio ecosystem to the hobbyist and Maker in the AVR Freaks and Arduino communities,” explained Oyvind Strom, Atmel Senior Marketing Director. “As the leader in the 8-bit MCU market, Atmel continues to add easy-to-use, innovative products to our broad portfolio of MCUs.”

IMG_5058

Key features of megaAVR MCUs include:

  • Simple, easy-to-use
  • Low power
  • Wide selection of development tools including free Atmel Studio IDE
  • Extensive set of peripherals, including ADC, Analog Comparator, SPI, I2C and USART
  • Single-cycle instructions running 1MIPS per MHz
  • Designed for high-level languages with minimal code space
  • Real-time performance with single cycle I/O access

Among a number of other new attributes:

  • Unique ID for every device enabling a more secure device for IoT applications and wireless networks
  • Improved accuracy of internal oscillators for UART serial communications
  • Enhanced accuracy of internal voltage reference for better analog-to-digital conversion results

IMG_5059

Makers seeking to accelerate their design are encouraged to check out our ultra-low cost Xplained Mini development platform, which is currently available for only $8.88 USD (see what we did there?) in the Atmel Store and fully compatible with 8-bit megaAVR MCUs. The new boards can easily be connected to any Arduino board making it ideal for a variety of projects and prototypes using an Arduino board.

The megaAVR 8-bit MCUs are fully supported by Atmel’s development eco-system including Atmel Studio 6.2, the integrated development environment (IDE) for developing and debugging Atmel | SMART Cortex-M and Atmel AVR MCU-based applications. Atmel Studio 6.2 gives designers a seamless and easy-to-use environment to write, build, simulate, program and debug their applications to write, build, simulate, program and debug your applications written in C/C++ or assembly code using the integrated GCC compiler and AVR assembler. With Atmel’s broad portfolio of AVR products and easy-to-use development software, designers can quickly bring their 8-bit MCU to market. Additionally, designers have access to the company’s embedded software including the Atmel Software Framework and application notes, and the Atmel Gallery app store.

Currently on display at Electronica 2014, the Atmel mega168PB, mega88PB and mega48PB are now available in 32-pin QFN and QFP packages with additional devices slated for later this year. All devices are sampling now. Production quantities for the mega168PB devices are available now while the mega88PB and ATmega48PB devices will be available in February 2015.

Want to explore the AVR microcontrollers a bit further? Head on over to the official page. Those wishing to learn more about the backstory and inspiration of the Maker Movement’s favorite 8-bit MCU can do so from the co-inventor himself here.

Introducing Atmel’s new LIN family for in-vehicle networking

LIN (Local Interconnect Network) is a serial network protocol used for communication between various automobile components to enable comfort, power-train, infotainment sensor, and actuator applications. The LIN Consortium was founded by five automakers (BMW, Volkswagen Audi Group, Volvo Cars, DaimlerChrysler) in the late 1990s, with the first fully-implemented version of the new LIN specification (1.3) published in November 2002. Version 2.0 was later introduced in September 2003, offering expanded capabilities and support for additional diagnostics features.

Fast forward 11 years later, Atmel is excited to announce its next-generation family of LIN transceivers, system basis chips (SBC) and voltage regulators for a wide-range of vehicle applications. The new family is the industry’s first to comply with the new original equipment manufacturer (OEM) hardware recommendations and provide scalable functionality to improve the overall system cost.

SNS16_8_family_layered

“As the leading provider of automotive LIN ICs, Atmel is committed to bringing more innovative LIN products to the market,” said Claus Mochel, Atmel Marketing Director for Automotive High Voltage Products.

All the new devices in this new family feature an LDO with outstanding minimum supply voltage of 2.3V combined with linear mode current of 130uA to support data storage even during an unexpected shut down. This new family is compliant with the latest standards including LIN 2.0, 2.1, 2.2, 2.2A and SAEJ2602-2. Some members of the family also include application specific functions such as relay drivers, watchdog, high-side switches and wake up inputs to enable system designers to build innovative in-vehicle network applications in next-generation automobiles.

The devices are available in DFN packages with heat-slug and wet-able flanks to support optical solder inspection. These next-generation devices also provide a family package footprint so that designers can upgrade their designs with various devices within the LIN SBC family.

“Our expanded LIN portfolio includes pin-outs that are the first to support the new OEM hardware recommendations enabling system designers to develop differentiated LIN systems in next-generation vehicles. Atmel’s LIN family footprint makes it easier to migrate upwards and devices in the family offer application-specific functionality for various LIN-connected applications such as window lifters, sun-roofs, trunk opener or seat controls,” Mochel added.

banner_lin

Key features of the ATA6632/33/34 include:

  • +3.3V/5V/85mA LDO suitable for usage with low-cost multi layer ceramic capacitors
  • 2.3V lowest operating voltage
  • Very low current consumption in linear mode
  • Sleep current; Normal mode current
  • DFN 8 (3x3mm) and DFN16 (3*5.5mm), wet-able flanks included, allowing automatic optical inspection of the solder joint

In order to accelerate the design development, an evaluation kit is also available to support the new LIN devices. The ATAB663xxxA development kit allows designers to quickly start designing with Atmel’s LIN family. The kit is easy-to-use with a pre-defined set-up. All pins are easily accessible for quick testing. The kits allow designers to select master or slave operation with a mounting option for LIN pull-up resistor and series diode.

Those interested will be happy to learn that samples for all family members are now available. You can find more detailed information — including datasheets and request forms — here.

Heading to Munich next week for Electronica 2014? Cruise on over to the Atmel booth — located in Hall A5, #542 — to discover how we’re bringing the IoT to the connected car though simple, touch-enabled human machine interfaces. There, you will find a number of automotive demos, including a door handle powered by Atmel’s fourth generation LIN device that features a curved touch-enabled glass display, providing excellent multi-touch performance for future automotive applications, and utilizing Atmel’s XSense and the maXTouch 2952T.

 

Engineering TV Talks Atmel Studio 6

Engineering TV’s Paul Whytock talks about Atmel Studio 6 with John Fogelin, Atmel’s principal technologist for software platforms MCU. From the company’s booth at the recent Electronica show, the two talked about how increasing software complexity has created the need for integrated development environments to evolve into platforms. The Atmel Studio 6 integrated development platform, for example, includes the Atmel Gallery apps store for third-party extensions and plug-ins. These additional tools have transformed Atmel Studio into a more comprehensive environment for efficient design of AVR and ARM core-based applications. Watch interview.

Have you tried Atmel Studio 6? What do you think about the platform?