Tag Archives: EE Times

Ars Technica, Daily Mail and other media talk SAM L21


The new Atmel | SMART L21 is expanding battery life from years to decades. 


This week, Atmel revealed the big news that the recently-unveiled Atmel | SMART SAM L family consumes just one-third the power of existing solutions already on the market. Having achieved a 185 EEMBC ULPBench score, the SAM L21 is now the world’s lowest power ARM Cortex-M based device.

Impressively, the series boasts power consumption down to 35µA/MHz in active mode and 200nA in sleep mode. The SAM L not only broadens the company’s current 32-bit ARM-based MCU lineup, but extends battery life from years to decades, reducing the number of times batteries need to be changed in devices such as fire alarms, wearables, medical gadgets and equipment placed in rural, agriculture, offshore and other remote areas. The SAM L21 combines ultra-low power with Flash and SRAM that are large enough to run both the application and wireless stacks — three features that are cornerstones of most Internet of Things (IoT) applications. Sampling now, the SAM L21 comes complete with a development platform including an Xplained Pro kit, code libraries and Atmel Studio support.

The SAM L21 MCUs will enable designers to solve their power challenges for battery-powered IoT devices — something that has caught the attention of mainstream media outlets including Ars Technica, Gizmodo, The Register, Network World and Daily Mail, as well as industry journals like Silicon Republic, New Electronics and EE Times.

 Sean Gallagher, Ars Technica 

“The number of things getting plugged into the Internet of Things has already reached the point of satire. But there’s a new, extremely low power technology that’s being prepared for market that could put computing power and network access into a whole new class of sensors, wearables, and practically disposable devices. That’s because it can run off a battery charge for over over 10 years.”

atmel-640x427

“The processor may not be enough to, say, run an Ubuntu desktop, but it’s certainly enough computing power and memory to run a real-time operating system with multiple programs, handle physical interfaces, stream media from a USB device or other external storage, and tweet you when your dishes are clean. It also can handle a lot of tasks that can reduce the power usage of other components in a device.”

Victoria Woollaston, Daily Mail 

“Battery life is consistently listed as a major flaw of smartphones, smartwatches and other wearables.  But this problem could soon be solved thanks to technology that promises to extend battery life for ‘decades.’ Atmel has released its latest microcontrollers (MCUs) for a variety of gadgets that are so low power they can even harvest energy from a person’s body.”

Hand

“They use a third of the power of rival chips and tests have shown they are the lowest power microprocessor ever made. The microcontrollers run on the firm’s picoPower technology and Atmel’s Event System that makes different parts of the device work together to carry out tasks. By effectively ‘sharing’ energy, the whole device uses less power and, subsequently, less battery.”

Jamie Condliffe, Gizmodo

“As everything around us, from phones and fridges to bicycles and trash cans, begins to connect to the Internet, there’s an increasing desire for low-power chips. Like this one, which can last for over ten years on a single battery charge. It has some other clever tricks up its sleeve. Usually in a chip like this, sleep mode sees everything but the clock function shut down, meaning it has to wake every time connected devices need to communicate; this new Atmel chip has different sleep states, allowing connected devices to communicate with each other while the chip continues to use very little power.”

“Of course, the chips don’t pack huge amounts of grunt. In fact, at best you’re looking at a 42 MHz Cortex M0+ CPU core, 256 kilobytes of Flash memory, 32 kilobytes of static RAM, and 8 kb of separate low-power static RAM. Not enough to run a desktop OS, then, but plenty to run small programs, power hardware interfaces, read and record data from sensors, tweet and the like.”

JC Torres, SlashGear

“Batteries, already the Achilles heel of mobile devices, present an even bigger challenge for even smaller devices, like wearables and the budding Internet of Things industry. These latter devices are not things that you would, or should, associate with the frequent charging and battery replacement we are used to on smartphones. How do you balance performance and battery life? Atmel, a micro-controller manufacturer based in San Jose, may have the answer. Its new ultra-low power SAM L21 32-bit ARM-based MCU (micro controller unit) is advertised to last more than a decade before needing a recharge or replacement.”

atmel-sam-l21-2

“That kind of battery life will be critical for a certain class of devices that include sensors, wearable, and smart home appliances. The SAM L21 advertises a power draw of only 35 microamps per MHz when awake and an even smaller 200 nanoamps when asleep. In comparison, current low-power MCUs already eat up to 120 to 160 microamps per MHz. The difference it definitely substantial.”

Patrick Nelson, Network World

“The Internet of Things is about to reverse a lot of what we’ve wanted in a chip. Soon, we won’t need vast amounts of calculations per second — just how many instructions does it take for your fridge to send an order to your supermarket? Not that many when you compare it to something complicated that chip design has been working towards, like a Computer Aided Design drawing in 3D, for example.”

“Size is important. However, the real big issue, when it comes to a ubiquitous IoT where everything is connected, will be battery life. The reason is that we are not going to want to change the batteries within the base of a dozen bottles of water that we may have sitting around just to discover whether we’ve drank their contents or not. Even if your fridge orders fresh stock, it wouldn’t be worth it.”

“That battery has to last the life of the connected object in the IoT. And that could be 10 years away, possibly longer. Atmel reckons it has a solution. It says its new 32-bit ARM-based chips will last decades. Note the plural. Atmel says its new chips combine battery-saving low power with flash and SRAM that is big enough to run both the application and the IoT-needed wireless stacks.”

Shaun Nichols, The Register

“Being a Cortex-M0+-powered chip, the SAM L21 is not particularly powerful: it tops out at 48MHz, and runs ARM Thumb (and some Thumb-2) code. But the family does pack a few features like USB interfacing, op-amps and comparators, DMA with peripherals, a random number generator, and AES cryptography in hardware, plus other bits and pieces. The idea is for each chip to sleep, wake up when something happens, make a decision on whether or not it needs to alert the wider world, and then go back to sleep.

atmelsaml21

“Constantly being in contact with its base over wired or wireless networking will drain its batteries; activating external electronics for power-hungry IP communications should only be done if its sensors detect something significant. Like an explosion or a fire.”

Gordon Hunt, Silicon Republic

“Sensors and batteries – the two keys to unlocking the future of IoT. Can we make small enough sensors to garner and exchange the right data? Can we make small enough, powerful enough, batteries that don’t need recharging every few hours?These are the two questions posed for today’s inventors, and they are being answered every day. Now, Atmel’s latest creation may have brought significant IoT engagement closer to reality, with its new low-powered 32-bit SAM L controller able extend the battery life of small, low-powered intelligent devices by decades.”

“The result is a far more efficient, small controller that, if advanced upon in the right way, will open up a whole new swathe of devices for IoT innovation. It’s just a sample, prototype release so far, but once the right people get their hands on this it’s only a matter of time before it creeps into suites of low-powered devices.”

Rich Quinnell, EE Times

“This week TI surpassed its own earlier result by announcing the MSP-432 family based on the Cortex M4F. It achieved a ULPBench score of 167.4. While TI was briefing the media on this product, however, Atmel quietly published a ULPBench score of 185.8 for its SAM L21 MCU based on the Cortex M0+, a product announced last year that was scheduled to be released at about this time. It’s reasonable to expect that a formal announcement of the product’s score and availability will be made soon.”

lower

Clive Maxfield, Embedded

“When it comes to applications including the Internet of Things (IoT), consumer, industrial, medical, and other battery-powered devices — e.g., fire alarms, healthcare, medical, wearable, and devices placed in rural, agriculture, offshore, and other remote areas — ultra-low-power consumption is the name of the game. MCU manufacturers are constantly competing with each other to offer the lowest power consumption possible. The latest ultra-low-power offering comes from the folks at Atmel, who have just announced their SMART SAM L21 — an ARM Cortex-M0+ based family of MCUs that boast power consumption down to 35µA/MHz in active mode and 200nA in sleep mode — which is said to ‘extend battery life from years to decades.’”

“The L21 goes much further than simply gating the clocks — it also gates the power, completely disconnecting the power rails from functions that are not currently in use. In the case of the smart peripherals, even when they are powered down, a small part of each peripheral keeps a ‘watchful eye’ on what’s happening in the outside world. If it sees something interesting, it can request clock and data services and — if the peripheral decides the situation justifies such an action — it can wake the main CPU… Also of interest is the CCL (custom configurable logic) block, which boasts four 3-input lookup tables (LUTs) that can implement a mix of combinatorial logic functions (AND, NAND, OR, NOR, XOR, XNOR, NOT) and sequential logic functions (gates D-type flip-flop, JK-type flip-flop, gated D-type latch, RS latch). These can be connected to the event system (including the peripherals), the interrupt system, and general-purpose input/outputs; also, they can be cascaded together. This makes it possible to implement sophisticated customized “wake-up” conditions for the various functional blocks.”

Interested learning more? You can head over to our initial blog post on the topic, download its accompanying white paper, as well as delve deeper into the MCU lineup here.

Who’s talking about the Arduino Zero ?

The Atmel-powered Arduino Zero dev board was officially announced on May 15th, 2014. The board’s debut has already been covered by a number of prominent tech publications, including Ars Technica, HackADay, EE Times, Electronics Weekly, CNX SoftwareUberGizmoGeeky Gadgets, SlashGear, PC World, SemiWiki and Makezine.

Sean Gallagher, Ars Technica



“The Zero is a 32-bit extension of Arduino’s flagship Uno board, developed jointly by the Arduino team and Atmel, targeted at helping developers prototype smart devices. Based on the Atmel SAM D21 ARM Cortex-based microcontroller, the Zero includes Amtel’s Embedded Debugger—allowing developers to debug their projects without having to wire up another interface.

”

“It gives developers a huge boost in storage and memory over the Uno, providing 256KB of onboard Flash storage (compared to the Uno’s 32KB) and 32KB of static RAM (compared to the Uno’s 2KB). It can also emulate an Electronically Erasable Programmable Read-Only Memory (EEPROM) of up to 168KB, while the Uno only supported 1KB of EEPROM.”

Brian Benchoff, HackADay

“The Arduino Zero uses an Atmel ARM Cortex-M0+ for 256kB of Flash and 32k of RAM. The board supports Atmel’s Embedded Debugger, finally giving the smaller Arduino boards debugging support.

“The chip powering the Zero features six communications modules, configurable as a UART, I2C, or SPI. USB device and host are also implemented on the chip [and] there are two USB connectors on the board.”

Max Maxfield, EE Times



“I’ve become a huge supporter of the Arduino, from the concept to the hardware to the software (IDE) to the ecosystem. I’m now using Arduinos and Arduino-compatible platforms for all sorts of projects, including my Infinity Mirror, my Inamorata Prognostication Engine and my BADASS Display.

“Each Arduino and Arduino-compatible platform offers different features, functions, capacities, and capabilities, which makes it possible to select the optimal platform for the project at hand using criteria such as size, cost, performance, and number of input/output pins. As of this morning, there’s a new kid on the block – the Arduino Zero, which has been jointly developed by Atmel and Arduino.”

Alasdair Allan, MakeZine

“While it shares the same form factor as the Arduino Leonardo—with 14 digital and 5 analog pins—all of the digital pins except the Rx/Tx pins can act as PWM pins, and the analog pins have a 12-bit ADC instead of the Leonardo’s 10-bit ADC, giving significantly better analog resolution,” writes Makezine’s Alasdair Allan.

“The new board comes with 256KB of Flash memory, and 32KB of SRAM. While the new board doesn’t have EEPROM, it does support 16KB by emulation, so Arduino sketches relying on this feature will still run without issue.”

Arduino Zero – official specs:

  • Microcontroller ATSAMD21G18, 48pins LQFP
  • Operating voltage 3.3V
  • Digital I/O Pins 14, with 12 PWM and UART
  • Analog input pins 6, including 5 12bits ADC channels and one 10 bits DAC
  • DC current per I/O Pin 7 mA
  • Flash memory 256 KB
  • SRAM 32 KB
  • EEPROM up to 16KB by emulation
  • Clock speed 48 MHz

Interested in learning more? You can check out the official Arduino Zero page here.

EE Times features Atmel’s next-gen touch controllers

Writing for the EE Times, Max Maxfield notes that Atmel is a major player in the touchscreen tech arena, especially in the large format screen space. Indeed, Atmel boasts a wide range of ultra-low-power single-chip touchscreen controllers for screens ranging from 1.5 to 15.6 inches. Earlier this week, the company expanded its popular maXTouch T lineup of touchscreen controllers with the mXT106xT2 family of devices.

“These devices include the high-end touchscreen features associated with state-of-the-art smartphone-sized products, but they target the larger format market with products whose screens are in the 7- to 8.9-inch range,” Maxfield explains.

“The mXT1066T2 and mXT1068T2 controllers support both mutual-capacitance and self-capacitance sensing. By intelligently switching back and forth between the two and using a hybrid approach, designers can achieve optimal power consumption and noise immunity, even in high humidity and moisture environments, while supporting bare finger and gloved operation.”

As Maxfield points out, mXT1068T2 controllers also supports hover operation in which the user’s finger can be up to 20mm above the touch surface. Indeed, hover adds another dimension to the user-touchscreen interface by allowing the touchscreen to detect, track and interact with a floating finger without physical contact.

“Currently, only single-finger hover is supported, but one can easily imagine how useful this would be if using a tablet to read a recipe when one’s hands are covered in food. In the future, multi-fingered hover control might allow the user to ‘grab’ objects and rotate them,” says Maxfield.

“Hover is one element in an increasingly sophisticated realm of human-machine interfaces (HMIs) that also include gesture recognition. In the not-so-distant future, people will interact with electronic systems using a mixture of voice control, gesture recognition and touchscreens, including hover technology.”

Last, but certainly not least, Maxfield notes that the mXT106xT2 lineup features a peripheral touch controller (PTC) capability that enables capacitive sensing of up to 12 channels via a dedicated hardware block in the mXT chip.

The new devices in the maXTouch T Series are currently in production, with the 8.3” screen size evaluation kit slated to ship in May.

Interested in learning more about Atmel’s popular maXTouch T lineup of touchscreen controllers? You can check out the product’s official page here.

Identifying four key IoT challenges



Writing for the EE Times, Angel Orrantia of SK Telecom Americas’ Innovation Accelerator says the Internet of Things (IoT) will change our interaction with each other and our environment – much like the PC, Internet and smartphone altered how we work and live.

Orrantia also identifies four key challenges related to the rise of the IoT, including moving past absolute dependence on smartphones, plugging into alternative power, riding the data flood and tapping innovation sources.

“Wearables need to have their own communication capabilities to break the connection to the phone and connect directly to the cloud,” Orrantia opines.

 “Moreover, these smart devices will communicate with one another directly, not just through the cloud and certainly not through two smartphones.”

More specifically, says Orrantia, to become truly useful, wearables will require an integrated GPS.

“Imagine a watch that not only can tell how many steps you’ve taken, but how far you went with those steps, and if those steps were on flat ground or climbing stairs,” he adds.

In terms of alternative power, Orrantia recommends a wide range of options for future devices, including wireless charging at a distance, energy harvesting, along with solar and kinetic energy.

Commenting on the data center, Orrantia echoes Gartner analysts who noted earlier this month that the IoT will have a significant impact on the data center market, its customers, technology providers, technologies, as well as sales and marketing models. Simply put, IoT deployments are expected to generate large quantities of data that need to be processed and analyzed in real time, leaving providers to face new security, capacity and analytics challenges.

Last, but certainly not least, says Orrantia, innovation will likely to be fostered via a multifaceted approach.

“[Nevertheless], the vast majority of innovations are going to be driven by brilliant entrepreneurs and the rare industry leader who is willing to take risks and try new funding business and innovation models,” he concludes.

The full text of “IoT Faces 4 Key Challenges” can be read here on EE Times.

Will Makers change Shenzhen?

Writing for the EE Times, Junko Yoshida says local culture in Shenzhen is rapidly changing, with a growing number of hi-tech workers reportedly joining the rapidly growing Maker Movement (chuang ke).

Indeed, RPTechWorks founder Yang Yango told Yoshida that “labor intensive” Shenzhen will eventually become a city known for fast prototyping with “shortened development” cycles. 

Qifeng Yan, ex-director of the Nokia Research Center in Shenzhen and currently director and chief researcher at Media Lab (Shenzhen) of Hunan University, expressed similar sentiments in an interview with Yoshida.

However, Yan noted that many individuals in Shenzhen lack free time and space. As such, the Maker Movement in Shenzhen (and China as a whole) is evolving into something quite distinct. 

More specifically, it is intertwined with the existing electronics ecosystem in Shenzhen, as Makers help local companies open DIY workshops, kick off fresh projects and even open new startups.

“The electronics market on Huanqiang Road has always been a destination for every EE. But its importance is increasing for the rest of us, with the maker movement catching on,” Yoshia concluded.

As we’ve previously discussed on Bits & Pieces, hardware development is becoming a more agile process with the aid of prototyping tools like Atmel-powered RepRap and Arduino boards – both of which are helping to facilitate innovation across the world and particularly in China.

“MakerSpaces will likely enable a new wave of tech startups in China as in the U.S,” Seeed Studio founder Eric Pan told Bits & Pieces during a recent interview. “To be sure, Makers working with their peers are now able to more easily realize their goals, while bringing products to market with new platforms such as e-commerce sites and crowdfunding.”

Interested in learning more about China and the Maker Movement? Previous Bits & Pieces articles on the subject are available here. Atmel also will be at Maker Faire Shenzhen 2014 in April, so be sure to stop by and see us if you are in the area!

Atmel’s SAM4Cx clinches ACE awards nomination

Atmel’s ARM-based SAM4Cx platform had been nominated as one of the 2014 ACE award finalists in the category of energy technology.

The 2014 ACE Awards, presented by EE Times and EDN, showcases the best of the best in today’s electronics industry, including the hottest new products, start-up companies, design teams, executives and more. Winners will be announced April 1 at the ACE Awards event held in conjunction with EE Live.

“One of the many joys of working with ARM Partners is to witness their technologies and teams recognized for their hard work,” an ARM rep told Bits & Pieces.

“We look forward to reviewing the ACE Awards each year to see which Partners have been nominated as a finalist. It makes us proud each year to see the pervasiveness of the ARM technology in so many categories.”

As we’ve previously discussed on Bits & Pieces, Atmel’s ARM-based SAM4Cx is a comprehensive smart energy platform designed specifically for next-gen grid communications, electricity, gas and water metering systems and energy measurement applications.

The Atmel SAM4Cx platform includes several system-on-chip (SoC) devices built around a dual-core ARM Cortex-M4 architecture with advanced security, metrology, wireless and power-line communications (PLC) options.

Key features of Atmel’s smart energy platform include best-in-class metrology with class 0.2 accuracy and dynamic range of up to 6000:1 for single and poly-phase applications; low-power PRIME PLC connectivity with integrated line driver; advanced cryptography; the ability to integrate application, communication and metrology; up to 2Mbytes of embedded Flash and 304Kbytes of SRAM with external memory expansion option.

Additional specs include low-power RTC, LCD and anti-tamper feature sets designed to reduce smart meter BOM by as much as 40 percent.

Interested in learning more about Atmel’s new and comprehensive smart energy platform? Be sure to check out our official product page here and Atmel’s SAM4Cx deep dive here.

Let’s talk about Atmel’s ATtiny

Writing for the EE Times, Jeremy Cook penned an article earlier this week about Atmel’s versatile ATtiny, a microcontroller (MCU) routinely used by both DIY Makers and professional engineers to power a wide range of projects.

“What if you want to shrink your project down to something that could rest on your fingertip? Appropriately named, the ATtiny chip fits the bill,” writes Cook. “Smaller than a quarter and costing around $3 when not purchased in bulk, this little guy has a lot going for it.”

Indeed, quite a number of  projects and platforms built around Atmel’s ATtiny have surfaced on Bits & Pieces in recent months, including:

* 2D-Lux smart LED disk (SLEDD) – NliteN’s 2D-Lux Smart LED Disk (SLEDD) is a dimmable 60W-incandescent-replacement LED smart “bulb” equipped with an Atmel AVR microcontroller (ATtiny85), USB interface and hardware-expansion pins.

* Digital tic-tac-toe – Powered by the ATtiny85, this modern implementation of the classic game boasts an AI mechanism capable of making defending or winning moves against a human opponent.

* Long-term LED blinkerATtiny10 runs an LED blinker for at least 6 months.

* Adafruit’s Gemma & Trinket – Uber-mini microcontroller boards built around the ATtiny85.

* Pressure sensitive floor – This ActiveFloor comprises a total of twenty-one 2′x4′ tiles, each one including 8 pressure-sensitive resistors and an ATtiny84-based platform.

* Chiptunes player – A tiny chip tunes player built around Atmel’s Attiny9.

* Duo Mini computer – A DIY computer powered by the ATtiny84.

* Nixie clock – This slick retro Nixie Clock is equipped with an ATtiny1634 MCU.

As previously discussed on Bits & Pieces, all tinyAVRs are based on the same architecture and compatible with other AVR devices. Features like integrated ADC, EEPROM memory and brownout detectors allow users to design applications without adding external components. The tinyAVR is also equipped with flash memory and on-chip debug for fast, secure, cost-effective in-circuit upgrades.

“The tinyAVR offers an advanced combination of miniaturization, processing power, analog performance and system-level integration,” an Atmel engineer explained. “Simply put, the tinyAVR is the most compact device in the AVR family and the only device capable of operating at just 0.7V. And there’s nothing really tiny about that. Plus, tinyAVR designs can be coupled with Atmel’s CryptoAuthentication tech for an extra level of security.”

It should also be noted that the smallest tinyAVR measures only 1.5mm x 1.4mm. This means makers, modders and engineers can all employ the tinyAVR as a single chip solution in small systems – or use it to deliver glue logic and distributed intelligence in larger systems.

“The AVR CPU gives the tinyAVR devices the same high performance as our larger AVR devices,” the engineering rep continued. “Flexible and versatile, they feature high code efficiency that lets them fit a broad range of applications.”

As expected, tinyAVR offers a high level of integration, with each pin boasting multiple uses as I/O, ADC and PWM. To be sure, even the reset pin can be reconfigured as an I/O pin. Oh, and yes, the tinyAVR also features a Universal Serial Interface (USI) which can be used as SPI, UART or TWI.

On the power side, where most microcontrollers require 1.8V or more to operate, the tinyAVR boosts the voltage from a single AA or AAA battery into a stable 3V supply to power an entire application. So if you do use tinyAVR tech in your next maker, hacked, modded or industrial project, be sure to check out our recently launched AVR Hero Contest! In the meantime, additional information about Atmel’s extensive tinyAVR lineup can be be found here.

Programming Arduino Pro Micro

EE Times’ David Peins takes a close look at the Arduino Pro Micro, based on an Atmel AVR ATmega32 microcontroller. His main objective: to use the board to control the robots that he uses in his educational program for 10 to 12 year olds. And his approach: to continue programming the Arduino Pro Micro until the board can do all of the tasks that he can now do with the PIC and BX-24 platforms.

He’ll keep us updated with his progress. But in the meantime, he brings up an interesting question: is writing subroutines really “hacking?”