Tag Archives: Doom

Hacker plays Doom on a Canon printer

In 1993, Doom was a revolutionary, incredibly popular game. Today, it’s being used by hackers like Context Information Security’s Michael Jordon to demonstrate security flaws in connected devices.


Recently, a team of researchers successfully completed a four-monthlong hack that enabled them to access the web interface of a Canon PIXMA printer before modifying its firmware to run the classic ’90s computer game. During his presentation at the 44Con Conference in London, Jordon conveyed to the audience just how easily he could compromise the Canon machine – a popular fixture in many homes and businesses.

Jordon undertook the endeavor of getting the game to run the printer’s hardware in order to demonstrate the inherent security flaws present in today’s Internet of Things (IoT) devices. From the exploitation standpoint, hacking the machine was trivial, as the researcher discovered that the device had a web interface with no username or password protecting it, thus allowing anyone to check the printer’s status.

Upon initial glance, this interface was of little interest, only showing ink levels and printing status. However, it soon became apparent that a hacker like Jordon could use this interface to trigger an update to the machine’s firmware. The printer’s underlying code was encrypted to prevent outsiders from tampering, yet not secure enough to prevent knowledgeable hackers from reverse engineering the encryption system and authenticating their own firmware.

Subsequently, an outsider could have potentially modified the printer’s settings to have it ask for updates from a malicious server opposed to Canon’s official channel. What this means is that malicious hackers could access personal documents the printer was currently printing or even start issuing commands to take up resources. In a business setting, hackers could also have gained privileges into the network, on which to carry out further exploitation.


“If you can run Doom on a printer, you can do a lot more nasty things. In a corporate environment, it would be a good place to be. Who suspects printers?” Jordon explained to the Guardian. “All PIXMA products launching from now onwards will have a username/password added to the PIXMA web interface, and models launched from the second half of 2013 onwards will also receive this update, models launched prior to this time are unaffected. This action will resolve the issue uncovered by Context.”

Over the course of recent months, context has been exposing various flaws found in unexpected places, such as a connected toy bunny, a smart light bulb and an IP camera. Believe it or not, a Canon printer isn’t the only system Doom has run on. Earlier this summer, a team of Australians was able to get it running on an ATM, and last year, a crew of modders managed to convert a piano into a Doom machine.

“The maturity isn’t there.” According to the Guardian, Jordon doesn’t believe manufacturers of such smart technologies are giving enough attention to security.

“What this shows is that IoT means virtually anything with a processor and internet connection can be hacked and taken over to do just about anything,” says William Boldt, Atmel Senior Marketing Manager Crypto Products. “With cameras and mics on PCs, home alarms, phones, video game controllers like Kinect, and other things, just imagine how intrusive the IoT really can be.”


Trust is what security is really all about, especially in today’s constantly-connected, intelligent world. And, Atmel security products are making it easy to design in trust easier. By providing highly advanced cryptographic technologies including industry leading, protected hardware based key storage that is ultra-secure, especially when compared to software based solutions, Atmel crypto technologies offer designers the strongest protection mechanisms available so their designs can be trusted to be real, reliable, and safe. After all, a smart world calls for smarter security.

The Atmel® CryptoAuthentication™ family offers product designers an extremely cost-effective hardware authentication capability in a wide variety of space-conscious packages. CryptoAuthentication ICs securely validate a wide variety of physical or logical elements in virtually any microprocessor-based system. Atmel offers both symmetric- and asymmetric-key algorithm-based devices. By implementing a CryptoAuthentication IC into your design, you can take advantage of world-class protection that is built with hardware security fortifications like full active metal shields, multiple tamper detection schemes, internal encryption, and many other features designed to thwart the most determined attacks.

Jordon’s wider point is that the world is filling up with smart objects and devices. Though they often may not appear to be computers, they often have minimal security features guarding them against hacks. This is where Atmel can help.

A closer look at a light-sensitive MIDI controller

Ah, the 90’s. Along with many others, I remember it fondly as the golden age of personal computing. I mean, who can forget the days of AdLib/Sound Blaster cards, Doom, BBS door games like Solar Realms Elite and MIDI files?

The truth is, each of the above-mentioned subjects probably deserves its very own nostalgic blog post, but today we’re going to focus on MIDI.

For the uninitiated, MIDI is an acronym for Musical Instrument Digital Interface, a technical standard or protocol that allows a wide variety of electronic musical instruments, computers and other related devices to connect and communicate with one another.

Although MIDI technology has been around since the 80’s in one form or another, it achieved widespread mainstream popularity in the 90’s alongside the rise of the PC. While MIDI may be somewhat old school for some, many hobbyists and modders proudly continue its legacy.

Case in point? A light-sensitive, Arduino-powered MIDI controller which popped up on YouTube just a few days ago, courtesy of Jacob Clarke.

“I’ve finally started messing around with Arduino properly. Found an old light sensor in my electronics stuff and decided to try my hand at rewiring a MIDI to USB cable I had lying around,” wrote Clarke.

“A few hours later I had a light sensitive MIDI controller working! This can be powered completely independent to a computer if need be (and into any synth). For the sake of making it ‘nice sounding’ I added a bit of code to round the notes into a pentatonic scale.”

Clarke says he has bigger plans in mind and will likely disassemble his creation, but it does serve as a good starting point and certainly makes for a fun video! If you are interested in trying this yourself,  the Arduino sketch has been posted to PasteBin and is  available here.