Tag Archives: DMA

Profile of an IoT processor for the industrial and consumer markets


 If there’s a single major stumbling block that is hindering the IoT take-off at the larger industrial scale, it’s security.


The intersection of data with intelligent machines is creating new possibilities in industrial automation, and this new frontier is now being increasingly known as the Industrial Internet of Things (IIoT). However, if there is a single major stumbling block that is hindering the IoT take-off at the larger industrial scale, it’s security.

It’s imperative to have reliable data in the industrial automation environment, and here, the additional security layers in the IoT hardware often lead to compromises in performance. Then, there is counterfeiting of products and application software, which is becoming a growing concern in the rapidly expanding IoT market.

sama5d2_google_1160x805_090215

Atmel’s answer to security concerns in the IIoT infrastructure: a microprocessor (MPU) that can deliver the security while maintaining the level of performance that Internet-connected systems require. The company’s Cortex A5 chip — the Atmel | SMART SAMA5D4 — securely stores and transfers data, as well as safeguards software assets to prevent cloning of IoT applications.

The SAMA5D4 series of MPUs enables on-the-fly encryption and decryption of software code from the external DRAM. Moreover, it boasts security features such as secure boot, tamper detection pins and safe erasure of security-critical data. The A5D4 processor also incorporates ARM’s system-wide security approach, TrustZone, which is used to secure peripherals such as memory and crypto blocks. TrustZone —comprising of security extensions that can be implemented in a number of ARM cores — is tightly integrated into ARM’s Cortex-A processors. It runs the processor in two different modes: First, a secure environment executes critical security and safety software, and secondly, a normal environment runs the rich OS software applications such as Linux. This lets embedded designers isolate critical software from OS software.

The system approach allows control access to CPU, memories, DMA and peripherals with programmable secure regions. That, in turn, ensures that on-chip parts like CPU and off-chip parts like peripherals are protected from software attacks.

Trust

Performance Uplift

The Atmel SMART | SAMA5D4 processor is based on the Cortex-A5, the smallest and simplest of the Cortex-A series cores that support the 32-bit ARMv7 instruction set. It’s targeted at applications requiring high-precision computing and fast signal processing — that includes industrial and consumer applications such as control panels, communication gateways and imaging terminals.

The use cases for SAMA5D4 span from kiosks, vending machines and barcode scanners, to smart grid, communications gateways and control panels for security, home automation, thermostats, etc. Atmel’s MPU features peripherals for connectivity and user interface applications. For instance, it offers a TFT LCD controller for human-machine interface (HMI) and control panel applications and a dual Ethernet MAC for networking and gateway solutions.

Apart from providing high-grade security, SAMA5D4 adds two other crucial features to address the limitations of its predecessor, SAMA5D3 processor. First, it uplifts performance through ARM’s NEON DSP engine and 128kB L2 cache. The NEON DSP with 128-bit single instruction, multiple data (SIMD) architecture accelerates signal processing for more effective handling of multimedia and graphics. Likewise, L2 cache enhances data processing capability for imaging applications.

The second prominent feature of the SAMA5D4 is video playback that boasts 720p resolution hardware video decoder with post-image processing capability. Atmel’s embedded processor offers video playback for H.264, VP8 and MPEG4 formats at 30fps.

A Quick Overview of the SAMA5D4

The SAMA5D4 processor, which got a 14 percent performance boost from its predecessor MPU, increasing operating speed to 528 MHz, is a testament of the changing microprocessor market in the IoT arena. Atmel’s microprocessor for IoT markets delivers 840 DMIPS that can facilitate imaging-centric applications hungry for processing power. Aside from that, the SAMA5D4 is equipped with a 32-bit wide DDR controller running up to 176 MHz, which can deliver up to 1408MB/s of bandwidth. That’s a critical element for high-speed peripherals common in the industrial environments where microprocessors are required to process large amounts of data.

sama5d4-block-diagram_734x612_large

Finally, the SAMA5D4 is configurable in either a 16- or 32-bit bus interface allowing developers a trade-off between performance and memory cost. There are four distinct chips in the SAMA5D4 family: SAMA5D41 (16-bit DDR), SAMA5D42 (32-bit DDR), SAMA5D43 (16-bit DDR along with H.264 video decoder)and SAMA5D44 (32-bit DDR along with H.264 video decoder).

The SoC-specific hardware security and embedded vision capabilities are a stark reminder of specific requirements of different facets of IoT, in this case, industrial and consumers markets. And Atmel’s specific focus on security and rich media just shows how the semiconductor industry is getting around the key IoT stumbling blocks.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Atmel expands SAM D Cortex M0+ MCU portfolio

Atmel has expanded its low-power ARM Cortex M0+-based MCU portfolio with three new families: the SAM D21, D10 and D11. These entry-level, low-power MCUs are packed with high-end features including Atmel’s Event System, SERCOM module, peripheral touch controller and a full-speed USB interface.

“As more devices are becoming smarter and connected in this era of the Internet of Things (IoT), designers are looking for MCUs with additional connectivity and communication options to scale their applications in the consumer, industrial and medical markets,” explained Patrick Sullivan, Vice President of Marketing, Microcontroller Business Unit, Atmel Corporation.

“Atmel’s new SAM D21, D10 and  D11 families of Cortex M0+-based MCUs deliver low-power consumption, connectivity and small footprint, providing designers just the right price-to-performance ratio. These new families expand the company’s growing line of Atmel Smart microcontrollers with new pin and memory combinations, along with new features such as DMA and crystal-less USB.”

samd2tools
As we’ve previously discussed on Bits & Pieces, Atmel’s SAM D portfolio is architected beyond the core, leveraging over two decades of MCU experience to create unique, connected peripherals that are easy-to-use, while providing scalability and performance. Indeed, to help simplify the design process and eliminate the need for additional components, Atmel’s new SAM D lineup integrates additional functionality, including full-speed crystal-less USB, DMA, I2S, timers/counters for control applications, along with several other new features. Atmel’s SAM D devices are also code- and pin-compatible making it easy for designers to migrate up and down the family.

“Atmel’s expanded portfolio of low-power SAM D family ARM Cortex-M0+-based devices enables more designers to deliver smart devices in this increasingly connected world,” said Noel Hurley, Deputy General Manager, CPU Group, ARM.

“The ARM Cortex-M0+ processor is a highly area- and energy-efficient core which enables partners, such as Atmel, to provide the right peripheral set, intelligence, communication and memory for their customers’ needs.”

Key  SAM D21 features include:

  • 48MHz operation
2.14 Coremark/MHz
  • Single-cycle IO access
  • 
6- to 12-channel Event System
  • 
6- to 12-channel DMA
  • Up to six SERCOM modules configurable as UART/USART, SPI, I2C
  • 12Mbps USB 2.0 device with an embedded host and device
  • 
Two-channel I2S with 96MHz fractional PLL for audio streaming
  • Up to five 16-bit timers, up to three 16-bit times optimized for control applications
  • Peripheral touch controller supports up to 256 touch channels for capacitive touch buttons, sliders, wheels and proximity sensing
  • 
Down to 70uA/MHz in active mode
  • 4uA RAM retention
  • Real-time clock and calendar
  • 
Option to choose between internal and external oscillators, on-the-fly clock switching
  • 
Sleepwalking

To help accelerate the design process, the $39 SAM D21 Xplained Pro is equipped with an embedded debugger/programmer and offers support for a wide range of compatible extensions boards. Standalone programmer debugger solutions supporting the SAM D family are also available from both Atmel and third parties, with the Atmel SAM D MCUs fully supported by Atmel Studio and Atmel Software Framework.

The SAM D21 is the first family in this expanded portfolio, and samples and tools are available today with volume production in May 2014. The SAM D21 is offered in 32KB to 256KB of Flash and in 32-, 48- and 64-pin packages. Meanwhile, the SAM D10 and D11 families will be available in 14- and 20-pin SOIC and 24-pin QFN packages with up to 16KB of Flash. Both memory options feature 4KB of SRAM. All package options minimize the number of power pins to maximize the amount of IO available for the application. Engineering samples and tools are slated to go live in Q2 2014.

Designing industrial sensors with Atmel AVR: Part I

Industrial sensors are typically tasked with detecting, positioning or identifying an object or rotating axis in a factory-automated system. Industrial sensors utilize a variety of technologies, including inductive, magneto-resistive, capacitive, optical, pressure and ultrasonic.

Key design considerations include:

  • Non-volatile storage for calibration values
  • Small PCB size
  • Accurate analog measurement
  • Arithmetic for signal conditioning
  • Digital communication interface for new emerging standards such as IO-Link
  • Optional analog output signal
  • Long product life time
  • Optional hardware authentication products for secure identification and authenticated confidential communications

“Atmel’s versatile AVR family of microcontrollers enables designers to meet the needs of a variety of sensor applications. First off, there is the small form factor, down to DNF 2x2x0,5 mm. We also provide on-chip true EEPROM, ADC with differential measurement/optional gain stage and internal analog reference voltage remains stable in changing temperatures,” an Atmel engineering rep told Bits & Pieces.

“Meanwhile, efficient 8-/16-bit CPU minimizes power consumption. Additional key specs include serial communication interfaces with Direct Memory Access (DMA) support, internal digital-to-analog converter (DAC), pulse width modulation (PWM) and CryptoAuthentication support, the latter offering a secure vault for root secrets (keys) and secure mechanisms for authentication.”

Interested in learning more about designing industrial sensors with Atmel AVR? You can check out our extensive device breakdown here. Also, be sure to check back tomorrow for part two of this series for an in-depth look at an Atmel-powered sensor device reference design.

Low-power design in the age of IoT

Facilitating low-power designs for electronic devices is more important than ever before as we move toward a world dominated by the Internet of Things (IoT).

Essentially, the IoT refers a future scenario in which all types of electronic devices link to each other via the Internet. Today, it’s estimated that there are nearly 10 billion devices in the world connected to the Internet, a figure expected to triple to nearly 30 billion by 2020.

The challenge? Reducing power consumption (to extend battery life) while simultaneously maintaining acceptable levels of performance. Fortunately, Atmel has been focusing on low power consumption for more than ten years across its extensive portfolio of AVR and ARM-based microcontrollers and embedded microprocessors.

Design techniques employed to achieve the critical balance between power consumption and performance include:

  • Use of hardware DMA and event system to offload the CPU
  • Cut clock or supply on device portions not in use
  • Careful balance of high performance and low leakage transistors
  • Fast wake up from low power modes
  • Low voltage operation

“With the Atmel picoPower technology found in our AVR 8-bit and 32-bit microcontrollers, we’ve even gone one step further. All picoPower devices are designed from the ground up for lowest possible power consumption – all the way from transistor design and process geometry, to sleepmodes and flexible clocking options,” an Atmel engineering rep told Bits & Pieces.

“Atmel picoPower devices can operate down to 1.62V while still maintaining all functionality, including analog functions. They have short wake-up time, with multiple wake-up sources from even the deepest sleep modes.”

Although certain elements of picoPower tech cannot be directly configured by the user, they do form a solid base that facilitates ultra-low-power application development without compromising functionality. On the user level, flexible and powerful features and peripherals allow engineers to more easily apply a wide range of techniques to reduce a system’s total power consumption even further. As expected, picoPower technology is also relatively simple to deploy, with both basic and advanced techniques reducing the power consumption of an application even further.

A perfect example of Atmel’s commitment to low-power devices is the 0.7V tinyAVR. Remember, a typical microcontroller requires at least 1.8V to operate – while the voltage of a single battery-cell ranges from 1.2V to 1.5V when fully charged, dropping gradually below 1V during use (yet still holding a reasonable amount of charge). This means the average microcontroller requires at least two battery cells.

“We have solved this problem by integrating a boost converter inside the ATtiny43U, converting a DC voltage to a higher level and bridging the gap between minimum supply voltage of the microcontroller and the typical output voltages of a standard single cell battery,” the Atmel engineering rep explained. “The boost converter provides the microcontroller with a fixed supply voltage of 3.0V from a single battery cell even when the battery voltage drops down to 0.7V.”

Simply put, this extends battery life by allowing non-rechargeable batteries to be drained to the minimum, while programmable shut-off levels above the critical minimum voltage level avoid damaging the battery cell of rechargeable batteries.

Interested in learning more about Atmel’s low-power, high performance portfolio? Be sure to check out our extensive ARM and AVR product lineups here.