Tag Archives: Cryptographic Algorithm

4 reasons why Atmel is ready to ride the IoT wave


The IoT recipe comprises of three key technology components: Sensing, computing and communications.


In 2014, a Goldman Sachs’ report took many people by surprise when it picked Atmel Corporation as the company best positioned to take advantage of the rising Internet of Things (IoT) tsunami. At the same time, the report omitted tech industry giants like Apple and Google from the list of companies that could make a significant impact on the rapidly expanding IoT business. So what makes Atmel so special in the IoT arena?

The San Jose, California–based chipmaker has been proactively building its ‘SMART’ brand of 32-bit ARM-based microcontrollers that boasts an end-to-end design platform for connected devices in the IoT realm. The company with two decades of experience in the MCU business was among the first to license ARM’s low-power processors for IoT chips that target smart home, industrial automation, wearable electronics and more.

Atmel and IoT (Internet of Things)

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market.

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market

A closer look at the IoT ingredients and Atmel’s product portfolio shows why Goldman Sachs called Atmel a leader in the IoT space. For starters, Atmel is among the handful of chipmakers that cover all the bases in IoT hardware value chain: MCUs, sensors and wireless connectivity.

1. A Complete IoT Recipe

The IoT recipe comprises of three key technology components: Sensing, computing and communications. Atmel offers sensor products and is a market leader in MCU-centric sensor fusion solutions than encompass context awareness, embedded vision, biometric recognition, etc.

For computation—handling tasks related to signal processing, bit manipulation, encryption, etc.—the chipmaker from Silicon Valley has been offering a diverse array of ARM-based microcontrollers for connected devices in the IoT space.

Atmel-IoT-Low-Power-wearable

Atmel has reaffirmed its IoT commitment through a number of acquisitions.

Finally, for wireless connectivity, Atmel has cobbled a broad portfolio made up of low-power Wi-Fi, Bluetooth and Zigbee radio technologies. Atmel’s $140 million acquisition of Newport Media in 2014 was a bid to accelerate the development of low-power Wi-Fi and Bluetooth chips for IoT applications. Moreover, Atmel could use Newport’s product expertise in Wi-Fi communications for TV tuners to make TV an integral part of the smart home solutions.

Furthermore, communications across the Internet depends on the TCP/IP stack, which is a 32-bit protocol for transmitting packets on the Internet. Atmel’s microcontrollers are based on 32-bit ARM cores and are well suited for TCP/IP-centric Internet communications fabric.

2. Low Power Leadership

In February 2014, Atmel announced the entry-level ARM Cortex M0+-based microcontrollers for the IoT market. The SAM D series of low-power MCUs—comprising of D21, D10 and D11 versions—featured Atmel’s signature high-end features like peripheral touch controller, USB interface and SERCOM module. The connected peripherals work flawlessly with Cortex M0+ CPU through the Event System that allows system developers to chain events in software and use an event to trigger a peripheral without CPU involvement.

According to Andreas Eieland, Director of Product Marketing for Atmel’s MCU Business Unit, the IoT design is largely about three things: Battery life, cost and ease-of-use. The SAM D microcontrollers aim to bring the ease-of-use and price-to-performance ratio to the IoT products like smartwatches where energy efficiency is crucial. Atmel’s SAM D family of microcontrollers was steadily building a case for IoT market when the company’s SAM L21 microcontroller rocked the semiconductor industry in March 2015 by claiming the leadership in low-power Cortex-M IoT design.

Atmel’s SAM L21 became the lowest power ARM Cortex-M microcontroller when it topped the EEMBC benchmark measurements. It’s plausible that another MCU maker takes over the EEMBC benchmarks in the coming months. However, according to Atmel’s Eieland, what’s important is the range of power-saving options that an MCU can bring to product developers.

“There are many avenues to go down on the low path, but they are getting complex,” Eieland added. He quoted features like multiple clock domains, event management system and sleepwalking that provide additional levels of configurability for IoT product developers. Such a set of low-power technologies that evolves in successive MCU families can provide product developers with a common platform and a control on their initiatives to lower power consumption.

3. Coping with Digital Insecurity

In the IoT environment, multiple device types communicate with each other over a multitude of wireless interfaces like Wi-Fi and Bluetooth Low Energy. And IoT product developers are largely on their own when it comes to securing the system. The IoT security is a new domain with few standards and IoT product developers heavily rely on the security expertise of chip suppliers.

Atmel offers embedded security solutions for IoT designs.

Atmel, with many years of experience in crypto hardware and Trusted Platform Modules, is among the first to offer specialized security hardware for the IoT market. It has recently shipped a crypto authentication device that has integrated the Elliptic Curve Diffie-Hellman (ECDH) security protocol. Atmel’s ATECC508A chip provides confidentiality, data integrity and authentication in systems with MCUs or MPUs running encryption/decryption algorithms like AES in software.

4. Power of the Platform

The popularity of 8-bit AVR microcontrollers is a testament to the power of the platform; once you learn to work on one MCU, you can work on any of the AVR family microcontrollers. And same goes for Atmel’s Smart family of microcontrollers aimed for the IoT market. While ARM shows a similarity among its processors, Atmel exhibits the same trait in the use of its peripherals.

Low-power SAM L21 builds on features of SAM D MCUs.

A design engineer can conveniently work on Cortex-M3 and Cortex -M0+ processor after having learned the instruction set for Cortex-M4. Likewise, Atmel’s set of peripherals for low-power IoT applications complements the ARM core benefits. Atmel’s standard features like sleep modes, sleepwalking and event system are optimized for ultra-low-power use, and they can extend IoT battery lifetime from years to decades.

Atmel, a semiconductor outfit once focused on memory and standard products, began its transformation toward becoming an MCU company about eight years ago. That’s when it also started to build a broad portfolio of wireless connectivity solutions. In retrospect, those were all the right moves. Fast forward to 2015, Atmel seems ready to ride on the market wave created by the IoT technology juggernaut.

Interested? You may also want to read:

Atmel’s L21 MCU for IoT Tops Low Power Benchmark

Atmel’s New Car MCU Tips Imminent SoC Journey

Atmel’s Sensor Hub Ready to Wear


Majeed Ahmad is author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Shouldn’t security be a standard?

Security matters now more than ever, so why isn’t security a standard feature in all digital systems? Luckily, there is a standard for security and it is literally standards-based. It is called TPM. TPM, which stands for Trusted Platform Module, can be thought of as a microcontroller that can take a punch, and come back for more.

“You guys give up, or are you thirsty for more?"

“You guys give up, or are you thirsty for more?”

The TPM is a small integrated circuit with an on-board microcontroller, secure hardware-based private key generation and storage, and other cryptographic functions (e.g. digital signatures, key exchange, etc.), and is a superb way to secure email, secure web access, and protect local data. It is becoming very clear just how damaging loss of personal data can be. Just ask Target stores, Home Depot, Brazilian banks, Healthcare.gov, JP Morgan, and the estimated billions of victims of the Russian “CyberVor” gang of hackers. (What the hack! You can also follow along with the latest breaches here.) The world has become a serious hackathon with real consequences; and, unfortunately, it will just get worse with the increase of mobile communications, cloud computing, and the growth of autonomous computing devices and the Internet of Things.

What can be done about growing threats against secure data?

The TPM is a perfect fit for overall security. So, just how does the TPM increase security? There are four main capabilities:

  1. Furnish platform integrity
  2. Perform authentication (asymmetric)
  3. Implement secure communication
  4. Ensure IP protection

These capabilities have been designed into TPM devices according to the guidance of an industry consortium called the Trusted Computing Group (TCG), whose members include many of the 800-pound gorillas of the computing, networking, software, semiconductor, security, automotive, and consumer industries. These companies include Intel, Dell, Microsoft, among many others. The heft of these entities is one of the vectors that is driving the strength of TPM’s protections, creation of TPM devices, and ultimately accelerating TPM’s adoption. The TPM provides security in hardware, which beats software based security every time. And that matters, a lot.

TPM Functions

Atmel TPM devices come complete with cryptographic algorithms for RSA (with 512, 1024, and 2048 bit keys), SHA-1, HMAC, AES, and Random Number Generator (RNG). We won’t go into the mathematical details here, but note that Atmel’s TPM has been Federal Information Processing Standards (FIPS) 140-2 certified, which attests to its high level of robustness. And, that is a big deal. These algorithms are built right into Atmel TPMs together with supporting software serve to accomplish multiple security functions in a single device.

Each TPM comes with a unique key called an endorsement key that can also be used as part of a certificate chain to prevent counterfeiting. With over 100 commands, the Atmel TPM can execute a variety of actions such as key generation and authorization checks. It also provides data encryption, storage, signing, and binding just to name a few.

An important way that TPMs protect against physical attacks is by a shielded area that securely stores private keys and data, and is not vulnerable to the types of attacks to which software key storage is subjected.

Hack1

But the question really is, “What can the TPM do for you?”  The TPM is instrumental in systems that implement “Root of Trust” (i.e. data integrity and authentication) schemes.

Root of trust schemes use hashing functions as the BIOS boots to ensure that there have been no unwanted changes to the BIOS code since the previous boot. The hashing can continue up the chain into the OS. If the hash (i.e. digest) does not match the expected result, then the system can limit access, or even shut down to prevent malicious code from executing.  This is the method used in Microsoft’s Bitlocker approach on PCs, for example. The TPM can help to easily encrypt an entire hard drive and that can only be unlocked for decryption by the key that is present on the TPM or a backup key held in a secure location.

Additionally, the TPM is a great resource in the embedded world where home automation, access points, consumer, medical, and automotive systems are required. As technology continues to grow to a wide spectrum of powerful and varying platforms, the TPM’s role will also increase to provide the necessary security to protect these applications.

Hack

Interested in learning more about Atmel TPM? Head here. To read about this topic a bit further, feel free to browse through the Bits & Pieces archive.

This blog was contributed by Ronnie Thomas, Atmel Software Engineer.