Tag Archives: crowd funding

Hardware renaissance sparked by the IoT

Analysts at ABI Research estimate the number of developers involved in Internet of Things (IoT) activities will reach 1.7 million globally by the end of 2014 – with the broader IoT ecosystem forecast to surpass three million developers in 2019.

“Currently, the IoT activity is largely polarized between hobbyists and makers at one end, and enterprise-level developers at the other end,” ABI principal analyst Aapo Markkanen explained.

Image Credit: Wilgengebroed on Flickr (via Wikipedia)

“But owing to a combination of various enablers, we can also see a growing number of startups taking the commercial plunge and starting to productize the concepts they’ve prototyped earlier with [development boards such as the] Arduino. That productization, however, can be an extremely difficult feat to pull off, requiring very diverse skillsets.”

According to Markkanen, the core enablers for productization comprise purpose-built cloud platforms and development kits, which are making the IoT accessible to developers who may differ greatly in terms of their resources and commitment.

“There are also several other, more indirect enablers that will be critical for the IoT’s evolution,” he said.

 “These include sensors and sensor engines, affordable 3D printers, as well as crowdfunding platforms. Collectively, all these building blocks could eventually translate into a perfect storm of hardware innovation.”

ABI Research practice director Dan Shey expressed similar sentiments.

“After all the talk about hardware being irreversibly commoditized and software ‘eating the world’ we may be actually soon witnessing a countertrend in the technology industry, driven by the consumer IoT,” he added.

“Consumers will shun away from anything that is not inspiringly designed and robustly produced, so any consumer-facing IoT play needs to deliver on both of those fronts if it’s to have any traction. In this sense, the IoT could represent the beginning of a hardware renaissance.”

A Pocket-Sized, Low-Power Ecosystem Makes Wi-Fi Easy

By Ingolf Leidert

Sensor networks are nothing brand new and even terms like “smart dust” have been around for a while. Many have envisioned a future where every technical entity around us will be “smart” in some way and is permanently connected to a huge network consisting of small sensors that help monitor and control our world. Usually, the large step into such a future vision is divided into several smaller steps. Obviously, one parameter seems to be essential for the small and smart sensors vision: the power consumption of such an entity. With the ATmegaRF SoC family, Atmel has introduced one of the lowest power IEEE 802.15.4 systems in the world. Its low power consumption combined with the full AVR microcontroller (MCU) capabilities makes networks built with lots of compact, low-power wireless sensors look more realistic now. One project that shows this perfectly is the Pinoccio.

Pinoccio is an open-source, crowd-funded solution that provides a complete ecosystem for building products supporting The Internet of Things. These small “scout” boards, compatible with the Arduino platform, come with everything a “smart, wireless, connected entity” would need:

  • LiPo battery (chargeable over USB)
  • LED
  • Temperature sensor
  • Antenna
  • Several I/Os for connecting DIY hardware (like more sensors)
  • And, as its “heart”, the Atmel ATmega128RFA1 with its excellent power consumption of less than 17mA when actively transmitting. The ATmega128RFA1 is pin-compatible with the new ATmegaRFR2 family…so perhaps we’ll see future “scout” boards in 64kB or 256kB versions. 

The developers have chosen that MCU explicitly for its low power and RF capabilities. And, as you can see from the estimated power specs, a sleeping scout board should be able to run for more than a year from one battery charge. Because the whole Pinoccio ecosystem includes a Wi-Fi board that finally connects all the tiny “scout” boards to an existing Wi-Fi infrastructure and even offers SD card data storage, this whole system looks like a wonderful first step into The Internet of  Things.

Open Sauce

By Steve Castellotti

CTO, Puzzlebox

North Beach, San Francisco’s Italian neighborhood, is famous for the quality and wide variety of its many restaurants. From colorful marquees scattered up and down Columbus to the hushed, more dimly lit grottos hidden down side streets and back alleys, there is no lack of choice for the curious patron.

Imagine then, having chosen from all these options, you sit down and order your favorite dish. When the plate arrives the waiter places next to it a finely embossed card printed on thick stock. A closer examination reveals the complete recipe for your meal, including hand-written notations made by the chef. Tips for preparation and the rationale for selecting certain ingredients over others are cheerfully included.

Flipping the card over reveals a simple message:

“Thank you for dining with us this evening. Please accept this recipe with our regards. You may use it when cooking for friends and family, or just to practice your own culinary skills. You may even open your own restaurant and offer this very same dish. We only ask that you  include this card with each meal served, and include any changes or improvements you make.”

Sharing the “Secret” Sauce

Having been raised in an Italian family myself, I can assure you that there is no more closely guarded secret than the recipe for our pasta gravy (the sauce). But I can’t help but wonder how such an open sharing might affect the landscape of a place such as North Beach. If every chef was obliged to share their techniques and methods, surely each would learn from the other? Customers would benefit from this atmosphere of collaboration in terms of the taste and quality of their dinners.

These many restaurants, packed so tightly together as they are, would still be forced to compete on terms of the dining experience. The service of their wait-staff, the ambience, and cost would count for everything.

For the majority of customers, knowledge of the recipe would simply be a novelty. In most cases they would still seek a professional chef to prepare it for them. But to the aspiring amateur, this information would contribute to their education. A new dish could be added to their repertoire.

An experienced restaurateur could no doubt correct me on any number of points as to why such a scenario would be a poor business model and never could or should be attempted. But just across town, throughout Silicon Valley and indeed across the globe, in the realm of technology, this exact model has been thriving for decades.

Open Source in the Software World

In the software world, developers have been sharing their source code (the recipe for the programs they write) under licenses similar to the one outlined above on a grand scale and to great success. The Internet itself was largely constructed using open platforms and tools. Mobile phones running Google’s Android operating system are now the most popular in the world, with complete source material available online. And in 2012 Red Hat became the first open source company to achieve a billion dollars in revenue, with customers from IBM to Disney and Pixar among their roster.

The benefits are many. Developers can leverage each others’ work for knowledge and time saving. If you want to build a new web site, there’s no need to write the web server or common routines such as user management from scratch. You can take open versions and start from there. Even better, if you have questions or run into trouble, more likely than not someone else has, too, and the answer is only a search away. Most importantly, if the problem you found indicates a flaw in the software (a bug), then a capable coder is empowered to examine the source and fix it himself or herself. And the result can be shared with the entire community.

There are parallels here to several fields. Similar principles form the basis of the scientific method. Without the sharing of procedures and data, independent verification of results would be impossible. And many discoveries result from iterating on proven techniques. A burgeoning do-it-yourself community, a veritable Maker Movement, has grown around magazines like Make and websites such as Instructables.com. New inventions and modifications to popular products are often documented in meticulous detail, permitting even casual hardware hackers to follow along. Electronics kits and prototyping boards from companies like Arduino are based on Atmel microcontrollers  plus open circuit designs, and are often used to power such projects.

Puzzlebox Brain Controlled Helicopter in Flight

Brain-Controlled Helicopter

Recently, our company, Puzzlebox, released the Orbit, a brain-controlled helicopter. The user begins by setting a display panel to the desired level of concentration and/or mental relaxation they wish to achieve.  A mobile device or our custom Pyramid peripheral processes data collected by a NeuroSky EEG headset. When that target is detected in the user’s brainwaves, flight commands are issued to the Orbit using infrared light. One can practice maintaining focus or a clarity of thought using visual and physical feedback.

Puzzlebox Brain-Controlled Helicopter with Atmel AVR

Puzzlebox Brain-Controlled Helicopter with Atmel AVR

Beyond novelty, however, lies the true purpose of the Puzzlebox Orbit. All source code, hardware designs, schematics, and 3D models are published freely online. Step-by-step guides for hacking the software and electronics are included. Methods for decoding infrared signals and extending mechanisms to operate additional toys and devices are shared. Creative modification is encouraged.  The goal is to promote the product as a teaching aid for middle and high school sciences classes and in university-level programming and electrical engineering courses.

Puzzlebox forging Classroom and Early Adoption of Technology for Education

This business model is itself a bit of an experiment, much like the restaurant described above. There is little preventing a competitor from producing a knock-off and leveraging our own recipes to do it. They might even open their doors just across the street from ours. We’ll need to work hard to keep our customers coming back for seconds. But so long as everyone abides by the rules, openly publishing any modifications of improvements made on our recipe, we’re not afraid to share the secrets of our sauce. We only ask that they include the original material with each dish they serve, and include any changes or improvements made along the way. We’re willing to compete on cost and dining experience. In this way we hope to improve the quality and flavor for everyone.

Puzzlebox with Arduino and Atmel AVR

Puzzlebox with Arduino and Atmel AVR

Puzzlebox Software IDE Interface

Openness and The Internet of Things

Today, communities such as Kickstarter and others tapping into the power of openness and crowd-sourcing are fueling a lot of technological innovation.  The next era for enterprise is revolving around The Internet of Things (#IoT), machine-to-machine (#M2M) communications and even the Industrial Internet (#IndustrialInternet).

One strong proponent of innovation and thought, Chris Anderson, is renowned for having his fingerprints and vision on trends as they bloom into movements.  Anderson is committed and energized in this Make-infused world. His latest book, “Makers: The New Industrial Revolution”, eloquently outlines the “right now” moment with makers. “Hardware is the new software”, opening up the brink of the next age of the Internet, where devices and machines become connected. Cloud, agile apps, and embedded design hardware (systems on chips, microcontrollers, or smart devices) are converging and  paving the next generation of integrated products across the fabric of devices.

“The real revolution here is not in the creation of the technology, but the democratization of the technology. It’s when you basically give it to a huge expanded group of people who come up with new applications, and you harness the ideas and the creativity and the energy of everybody. That’s what really makes a revolution.

…What we’re seeing here with the third industrial revolution is the combination of the two [technology and manufacturing]. It’s the computer meets manufacturing, and it’s at everybody’s desktop.”

Excerpt credited from Chris’s Anderson’s “Maker: The New Industrial Revolution”

With that said, we enter the next age, where hardware is the new software.