Tag Archives: cpu-core

SAMA5 and SAM9: Atmel’s big iron microprocessors

Atmel is rightly famous for its AVR line of 8-bit Flash microcontrollers. But we also have “big iron” chips like the SAMA5 and SAM9 ARM-core microprocessors. A microcontroller has its own internal Flash memory. A microprocessor uses external memory, as much or as little as your application might need.

Hardware engineers have two big worries with any “big iron” microprocessor. First, they are in big packages, hundreds of pins in a ball-grid array. That can be hard to prototype with, since it needs a fine-line PCB that costs a lot to spin. The other big concern is laying out the DDR memory interface. These are wickedly fast and require best layout practices and some register tweaking to get them up to full speed.


The SAMA5D3 Xplained kit has connectors for Arduino Shields and dual Ethernet ports.

Thankfully, Atmel has solved both problems with a series of evaluation systems. For the SAMA5, you can start with a 79-dollar SAMA5D3 Xplained Kit. It has solved your DDR memory problem since it’s got 256MB on-board. One of the coolest things is that it has connectors where you can plug in any Arduino Shield. Now you can’t use the Arduino libraries, those are based on Atmel’s 8-bit AVR, but it’s not hard to re-write the open source code libraries into something that will run on ARM, if someone hasn’t done it already. The eval board has Atmel’s SAMA5D36 Cortex-A5 Microprocessor, 256Mbytes of NAND Flash, LCD connectors, dual Ethernet (GMAC + EMAC) with PHY and connectors, three USB connectors (2 Host + 1 Device), one SD/eMMC and one MicroSD slots, expansions headers, and power measurement straps.


Atmel makes eval kits for the SAM9N12 (left) and SAM5D3x ARM-based microprocessors.

For those that are doing higher-level applications, the fact that you can run Linux brings all the advantages of open-source development to the SAMA5 and SAM9 microprocessors. And best yet, you get a powerful CPU that uses very little power thanks to Atmel’s architecture. The SAMA5 uses 150mW when running at full speed. It has a DDR controller that give you 1328MB/s of bandwidth. It comes with for gigabit Ethernet, 3 USB ports, dual CAN, UARTs, SPI, and an LCD controller with a graphics accelerator. There is a camera interface, a 12-bit analog to digital converter (ADC) and 32-bit timers.

A SAMA5 chip can run Linux and even has the power to run Android in a “headless” application, that is, where there is not a high-resolution display to eat up your CPU cycles. With an ARM core it’s ideal if you want to do “bare metal” development, where you are writing native ARM code.


The SAM9N12 architecture gives you low power and a great peripheral set.

Looking at the SAM9, the SAM9CN runs at 400MHz. They have security built in with a cryptographic engine and a secure boot. There is an LCD controller with touchscreen interface, USB, MLC NAND memory support, along with multiple UARTs and I2C. It sips 103mW at 400MHz.

You can get separate LCD panels made to work with the SAMA5 Xplained kit. But if you want to get a SAMA5 kit with the LCD already included, look at the 595-dollar SAMA5D31, SAMA5D33, SAMA5D34 and SAMA5D36 kits. There is also the 445-dollar SAMA5D35 kit, which is cheaper since it does not have an LCD system. These kits cost more but they come ready to go. These are a small working computer that you can immediately start programming in high-level languages or Linux scripts. The kits come with installed applications for its Qt-based GUI.


The SAM5A5Dx-EK demo kit comes with Linux and some demo applications pre-installed.

And if you dread laying out a PCB with a working DDR memory interface, but don’t need the whole $595 kit, you can get help there as well. You will notice that the microprocessor and memory are on a little mezzanine PCB in the SAMA5D3 demo kits. This PCB will be available from Embest and other partners. The SAM9 is also available as a tiny SBC (single-board computer).


The SAMA5D3-EK series are designed with a mezzanine card holding the CPU and DDR memory. You can use this card in your high-volume designs.

So now you can develop your custom hardware starting with the SAMA5D3 kit, and then make your own custom hardware that still uses the same exact CPU+memory mezzanine card. While you are perfecting and troubleshooting that hardware, your software team can be working on the Atmel eval kit. This paralleled development will substantially speed up your time to market. And best yet, you won’t be bogged down trying to troubleshoot the DDR memory interface, since it is already working on the mezzanine card.

So don’t just think of 8-bit AVRs when you consider Atmel. We make some really high-power MPU products for everything from IoT (Internet of Things) servers to routers and industrial automation. With Atmel’s kits and our extensive partner network, we can get you up and running in no time, for very little cost, and you can have confidence you designs will work on that final hardware spin.